首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Several different factors in the collection and preservation of whale skin and blubber samples were examined to determine their effect on the results obtained by stable nitrogen and carbon isotope (δ15N and δ13C) analysis. Samples of wet killer whale skin retained their original stable isotope values for up to 14 d at 4°C or lower. However, decomposition significantly changed the δ15N value within 3 d at 20°C. Storage at ?20°C was as effective as ?80°C for the preservation of skin and blubber samples for stable isotope analysis for at least a year. By contrast, once a skin sample had been freeze‐dried and lipid extracted, the stable isotope values did not change significantly when it was stored dry at room temperature for at least 12 mo. Preservation of whale skin samples for a month in DMSO‐salt solution, frozen or at room temperature, did not significantly change the δ15N and δ13C values of lipid extracted tissues, although the slight changes seen could influence results of a study if only small changes are expected.  相似文献   

2.
Teeth of odontocetes accumulate annual dentinal growth layer groups (GLGs) that record isotope ratios, which reflect the time of their synthesis. Collectively, they provide lifetime records of individual feeding patterns from which life history traits can be inferred. We subsampled the prenatal dentin and postnatal GLGs in Risso's dolphins (Grampus griseus) (n = 65) that stranded or were collected as bycatch in Taiwan (1994–2014) and analyzed them for δ15N and δ13C. Age‐specific δ15N and δ13C values were corrected for effects of calendar year, stranding site, C/N, and sex. δ15N values were higher in prenatal layers (14.94‰ ± 0.74‰) than in adult female GLGs (12.58‰ ± 0.20‰), suggesting fetal enrichment during gestation. Decreasing δ15N values in early GLGs suggested changes in dietary protein sources during transition to complete weaning. Weaning age was earlier in males (1.09 yr) than in females (1.81 yr). Significant differences in δ15N values between weaned males and females suggest potential sexual segregation in feeding habits. δ13C values increased from the prenatal to the 4th GLG by ~1.0‰, indicative of a diet shift from 13C‐depleted milk to prey items. Our results provide novel insights into the sex‐specific ontogenetic changes in feeding patterns and some life history traits of Risso's dolphins.  相似文献   

3.
The utility of δ15N measurements in Padina australis Hauck as a probe for its external nitrogen (N) sources was tested by monitoring the bulk values of chemical components [δ15N, δ13C, and N and carbon (C) contents] and their internal distributions during a 12 d incubation in a controlled environment. Under the saturated conditions of isotopically heavier nitrate than that of original algal tissue, the bulk δ15N in P. australis was enriched, but less than what was predicted from a simple mixing model, signaling possible isotopic discrimination during N assimilation and subsequent N efflux from the cells. The enhanced N content (%), which occurred simultaneously with this δ15N shift, was a useful signal indicating this phenomenon. Bulk δ15N was enriched, especially around the meristem, in tissues growing under conditions of higher irradiance and temperature, probably due in part to dissolved organic nitrogen (DON) excretion. The δ13C enhancement in bulk algal tissues, also associated with high photosynthetic activity, may be an additional signal indicating this unbalanced internal δ15N distribution. However, in summer and winter environmental conditions with periodic nitrate supplies simulating typical fringing reef waters, the difference in measured algal bulk δ15N from theoretical predictions was within ±1.0‰. This difference is very small compared with the variation in δ15N in possible N sources in coastal areas. In the field, therefore, δ15N in Padina can be used effectively to trace N sources in both space and time after determining algal N content and δ13C to determine whether large alterations occur in algal δ15N.  相似文献   

4.
Stable isotope composition of organisms from different trophic groups collected from a semi‐isolated wetland pool in the Ross River estuary, northern Australia, was analysed to determine if there was a consistent relationship between δ13C, δ15N and trophic level that could be used to assign trophic positions. A strong linear negative relationship between δ13C and δ15N was detected for the three trophic levels considered (primary producers, primary consumers and secondary consumers). This relationship was consistent among trophic levels, differing only in height, that is, on δ15N values, which indicate trophic positions. A difference of 3.6–3.8‰ between trophic levels was present, suggesting a δ15N fractionation of approximately 3.7‰, a value slightly higher than the commonly assumed δ15N fractionation of approximately 3.4‰. The relationship between δ13C and δ15N was similar for invertebrate and fish primary consumers, indicating similar δ15N trophic fractionation for both groups, meaning trophic positions and trophic length could be reliably calculated based on either invertebrates or fish.  相似文献   

5.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

6.
Determination of the ratios of natural stable isotopes (13C/12C and 15N/14N) in unfed Ixodes ricinus nymphs and adults, which, in their previous stage, fed on captive wild rodents (Apodemus sylvaticus and Myodes glareolus), wild birds (Parus major and Cyanistes caeruleus) or domestic ruminants (Ovis aries and Bos taurus), demonstrated that it is possible to identify each host category with confidence. First, the tick–blood spacing, which is the difference between values obtained from ticks and the blood of hosts that they had fed on in the previous stage, was consistent (152 spacings investigated from 15 host individuals in total). Second, potential confounding factors (tick age and sex) did not affect the discriminatory power of the isotope patterns, nor did different rearing conditions (room temperature vs. 4 °C) or the duration of development (maximum of 430 days). The findings that the tick–blood isotope spacings, across a diverse range of hosts, were similar and predictable, and that confounders had little or no effect on this, strongly support the usage of the isotope approach. Because each of the host categories has a different role in the population dynamics of I. ricinus and in tick‐borne pathogen ecology, the method described here has great potential for the clarification of tick and tick‐borne pathogen ecology in the field.  相似文献   

7.
G. D. Cook 《Austral ecology》2001,26(6):630-636
The ratios of stable nitrogen isotopes expressed as δ15N values can indicate the openness of nitrogen cycles in ecosystems. Southwards through the Northern Territory, values of foliar δ15N in savanna trees increase as mean annual rainfall decreases from approximately 1800 mm to approximately 750 mm, with foliar δ15N thereafter decreasing toward arid central Australia. Recent literature argues that this pattern is caused by higher grazing intensity in semi‐arid savannas, but counter views have attributed the pattern more directly to variations in aridity. In this paper, grazed and ungrazed sites in a semi‐arid savanna are compared, and it is shown that grazing has a relatively small effect on the positive foliar δ15N values of grasses, but no effect on δ15N values of trees. This gives little support to the argument that variations in grazing pressure at the scale of hundreds of kilometres could result in detectable differences in the foliar δ15N values of trees. I then compare the semi‐arid savannas with mesic savannas, where fires are frequent, and with mesic rainforests, which are rarely burnt. Greater foliar δ15N values in rainforest and fire‐excluded mesic savannas than in frequently burnt savannas suggests that fire regimes affect foliar δ15N. The previously observed pattern in δ15N values along the rainfall gradient in the Northern Territory is consistent with trends in fire frequency and possible direct effects of fire, but further work is required to determine the relative impacts of aridity and fire. Within a particular rainfall regime, foliar δ15N values may indicate historical fire frequencies.  相似文献   

8.
9.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

10.
Variations in δ13C and δ15N might arise from differences in nutrient allocation. Residence times of δ13C and δ15N vary among tissues depending on metabolic turnover rates. However, because of their small size, entire individual insects are generally used as single samples in isotope analyses. The present study aimed to determine the degree of isotope similarity among regions of the adult body and eggs in four species of Plecoptera (Amphinemura sp., Sweltsa sp., Kamimuria tibialis Pictet and Ostrovus sp.). Levels of δ13C and δ15N differ between the four species, being lowest in Amphinemura sp., and with δ15N being highest in Sweltsa sp. Egg masses contain consistently the lowest values of δ13C in the four species, with the δ15N value of eggs being highest in K. tibialis and Ostrovus sp., and lower in Amphinemura and Sweltsa spp. In Sweltsa sp., the δ15N levels of the dermal layers and cuticle are lowest, whereas the δ13C values of the dermal layers and cuticle are almost equal to those in other regions of the body, except egg masses. Oviposited individuals of Amphinemura and Sweltsa spp. have lower δ15N levels than individuals that have not oviposited. The rates of metabolism and incorporation of dietary metabolites will differ depending on the body regions and species. Differences in egg ecology such as egg developmental period and egg buoyancy among species are considered to impact on the values of δ13C and δ15N. These results will be useful for understanding the nutritional status of aquatic insects and their energy allocation.  相似文献   

11.
Aim We sought to quantify geographical variation in the stable isotope values of mouse lemurs (Microcebus) and to determine whether this variation reflects trophic differences among populations or baseline isotopic differences among habitats. If the latter pattern is demonstrated, then Microcebus can become a proxy for tracking baseline habitat isotopic variability. Establishing such a baseline is crucial for identifying niche partitioning in modern and ancient communities. Location We studied five species of Microcebus from eight distinct habitats across Madagascar. Methods We compared isotopic variation in C3 plants and Microcebus fur within and among localities. We predicted that carbon and nitrogen isotope values of Microcebus should: (1) vary as a function of abiotic variables such as rainfall and temperature, and (2) covary with isotopic values in plants. We checked for trophic differences among Microcebus populations by comparing the average difference between mouse lemur and plant isotope values for each locality. We then used multiple regression models to explain spatial isotope variation in mouse lemurs, testing a suite of explanatory abiotic variables. Results We found substantial isotopic variation geographically. Ranges for mean isotope values were similar for both Microcebus and plants across localities (carbon 3.5–4.0‰; nitrogen 10.5–11.0‰). Mean mouse lemur and plant isotope values were lowest in cool, moist localities and highest in hot, dry localities. Rainfall explained 58% of the variation in Microcebus carbon isotope values, and mean plant nitrogen isotope values explained 99.7% of the variation in Microcebus nitrogen isotope values. Average differences between mouse lemur and plant isotope values (carbon 5.0‰; nitrogen 5.9‰) were similar across localities. Main conclusions Isotopic data suggest that trophic differences among Microcebus populations were small. Carbon isotope values in mouse lemurs were negatively correlated with rainfall. Nitrogen isotope values in Microcebus and plants covaried. Such findings suggest that nitrogen isotope values for Microcebus are a particularly good proxy for tracking baseline isotopic differences among habitats. Our results will facilitate future comparative research on modern mouse lemur communities, and ecological interpretations of extinct Holocene communities.  相似文献   

12.
This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ13C or δ15N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood = 150 days, N t95%blood = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ13C and Δ15N values in blood and muscle using all individuals were Δ13Cblood = 1·7‰, Δ13Cmuscle = 1·3‰, Δ15Nblood = 2·5‰ and Δ15Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ13C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long‐term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ13C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ13C = 1·5‰). For Δ15N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ15N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ15N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more targeted research.  相似文献   

13.
Although most carabids are primarily carnivorous, some carabid species are omnivorous, with mainly granivorous feeding habits during the larval and/or adult stages (granivorous carabids). This feeding habit has been established based on laboratory and field experiments; however, our knowledge of the feeding ecology of these beetles in the field is limited owing to the lack of an appropriate methodology. In this study, we tested the utility of stable isotope analysis in investigations of the feeding ecology of granivorous carabids in the field, using two closely related syntopic species, Amara chalcites and Amara congrua. We addressed two issues concerning the feeding ecology of granivorous carabids: food niche differentiation between related syntopic species during the larval stage and the effect on adult body size of supplementing seeds with an animal diet during the larval stage. To investigate larval feeding habits, we analysed newly emerged adults, most somatic tissues of which are considered of larval origin. In the two populations examined, both δ15N and δ13C were significantly higher in A. chalcites than A. congrua, suggesting that the two species differentiate food niches, with A. chalcites larvae being more carnivorous than A. congrua larvae. The two isotope ratios of A. chalcites samples from one locality were positively correlated with body size, suggesting that more carnivorous larvae become larger adults. However, this relationship was not detected in other species/locality groups. Thus, our results were inconclusive on the issue of diet supplementation. Nevertheless, overall, these results are comparable with those of previous laboratory‐rearing experiments and demonstrate the potential utility of stable isotope analysis in field studies on the feeding ecology of granivorous carabids.  相似文献   

14.
集约化生产下农田土壤碳、氮含量变化是衡量土壤肥力持久性的重要指标.对常规水稻-蚕豆轮作地、露地蔬菜地、3年塑料大棚地和10年以上塑料大棚地的土壤pH、电导率(EC)、土壤有机碳(SOC)和总氮(TN)含量及δ13C和δ15N同位素丰度进行测定,研究了集约化生产程度对土壤特性的影响.结果表明:与水稻-蚕豆轮作地相比,露地蔬菜地、3年塑料大棚地和10年以上塑料大棚地0 ~20 cm耕层土壤pH分别降低1.1、0.8和0.7,而土壤EC分别是水稻-蚕豆轮作地的4.2、4.9和5.2倍;土壤碳、氮含量随塑料大棚地生产年限的增加总体上呈先增大后减小的趋势.与水稻-蚕豆轮作地相比,10年以上塑料大棚地0~20、20~40、40 ~60、60 ~ 80、80 ~ 100 cm土层的土壤SOC含量分别下降了54%、46%、60%、63%和59%,土壤TN含量分别下降了53%、53%、71%、82%和85%.农田集约化生产程度显著影响土壤SOC、TN含量和δ13C、δ15N丰度,土壤δ13C丰度与SOC含量呈显著负相关.土壤δ13C丰度可作为评价农田土壤碳循环受人为干扰强度的指标.  相似文献   

15.
Ecosystem respiration (Reco) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ14C and δ13C into four sources–two autotrophic (above – and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ14C and δ13C of sources using incubations and the Δ14C and δ13C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco. Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.  相似文献   

16.
流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征   总被引:2,自引:0,他引:2  
宁加佳  刘辉  古滨河  刘正文 《生态学报》2012,32(5):1502-1509
为了解影响流溪河水库颗粒有机物(POM)碳和氮稳定同位素(δ13C和δ15N)变化的主要因素,及其与浮游动物δ13C和δ15N之间的关系,于2008年5月至12月份对POM及浮游动物的δ13C和δ15N进行了研究。颗粒有机物碳稳定同位素(δ13CPOM)和氮稳定同位素(δ15NPOM)的季节性变化幅度分别为5.1‰和2.2‰,5月和7月份δ13CPOM较高,而在10月和12月份降低,这主要与降雨将大量外源有机物带入水库而引起的外源及内源有机物在POM组成上发生变化有关。δ15NPOM总体呈上升趋势,可能是由降雨引起的外源负荷、初级生产力、生物固氮等因素共同作用的结果。浮游动物的δ13C及δ15N总的变化趋势与POM的相似,也具有明显的季节性变化,食物来源的季节变化可能是造成其变化的主要原因。在5月份,浮游动物的食物来源为POM中δ13C较高的部分,也就是外源有机物,而在10月及12月份,其食物则可能主要为浮游植物。  相似文献   

17.
Carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope ratios were longitudinally measured in fingernail and hair samples from mother-infant pairs where infants were exclusively breastfed (n = 5), breast- and formula-fed (n = 2), or exclusively formula-fed (n = 1) from birth. All exclusively breastfed infants had a dual enrichment in carbon ( approximately 1 per thousand) and nitrogen ( approximately 2-3 per thousand) when compared to maternal values. In contrast, breast- and formula-fed subjects had reduced enrichments compared to exclusively breastfed subjects, and the exclusively formula-fed infant showed no increase in delta(13)C or delta(15)N values. This finding of a carbon trophic level effect in breastfeeding infants suggests that (13)C-enrichments of approximately 1 per thousand in archaeological populations are not necessarily the result of the consumption of C(4)-based weaning foods such as maize or millet. During the weaning process, the delta(13)C results for breastfed infants declined to maternal levels more rapidly than the delta(15)N results. This suggests that delta(13)C values have the potential to track the introduction of solid foods into the diet, whereas delta(15)N values monitor the length of time of breast milk consumption. These findings can be used to refine the isotopic analysis of breastfeeding and weaning patterns in past and modern populations.  相似文献   

18.
The natural abundance of carbon stable isotopes (δ13C) of marine macrophytes has been measured in previous studies and used to analyze differences in Ci assimilation among the three macroalgal phyla, Chlorophyta, Ochrophyta, and Rhodophyta, and seagrasses, distinguishing diffusive CO2 entry from the operation of a CO2‐concentrating mechanisms (CCM). The work reported here further resolves the patterns of δ13C variation in aquatic macrophytes related to their taxonomy, geographic location (and consequently climatic conditions), and vertical zonation. Analyses of δ13C for 87 species are reported, including eight that have not been previously examined, belonging to taxa in the three macroalgal phyla, plus two species of seagrasses, collected at different latitudes. For one species of each phylum, analyses were also conducted through a vertical depth gradient. Representative species were used in a pH drift experiment, in order to compare the mechanism of Ci acquisition for photosynthesis with the δ13C subsequently determined on the same specimen. Our results suggest that the δ13C values were mostly determined by taxonomy. Depth effects on C stable isotope composition differed among taxa. The parallel measurements of δ15N are more difficult to interpret mechanistically; there are no robust phylogenetic and large‐scale biogeographic correlations; local factors of natural (e.g., upwellings) and anthropogenic (e.g., sewage outfall) inputs predominate in determining the macrophyte δ15N.  相似文献   

19.
Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha?1 after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ13C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ13C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ13C values with depth.  相似文献   

20.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号