首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate change is expected to alter the magnitude and variation of flow in streams and rivers, hence providing new conditions for riverine communities. We evaluated plant ecological responses to climate change by transplanting turfs of riparian vegetation to new elevations in the riparian zone, thus simulating expected changes in water‐level variation, and monitored the results over 6 years. Turfs moved to higher elevations decreased in biomass and increased in species richness, whereas turfs transplanted to lower elevations gained biomass but lost species. Transplanted plant communities responded slowly to the new hydrologic conditions. After 6 years, biomass of transplanted turfs was statistically indistinguishable from target level controls, but species richness and species composition of transplants were intermediate between original and target levels. By using projections of future stream flow according to IPCC climate change scenarios, we predict likely changes to riparian vegetation in boreal rivers. Climate‐driven hydrologic changes are predicted to result in narrower riparian zones along the studied Vindel River in northern Sweden towards the end of the 21st century. Present riparian plant communities are projected to be replaced by terrestrial communities at high elevations as a result of lower‐magnitude spring floods, and by amphibious or aquatic communities at low elevations as a result of higher autumn and winter flows. Changes to riparian vegetation may be larger in other boreal climate regions: snow melt fed spring floods are predicted to disappear in southern parts of the boreal zone, which would result in considerable loss of riparian habitat. Our study emphasizes the importance of long‐term ecological field experiments given that plant communities often respond slowly and in a nonlinear fashion to external pressures.  相似文献   

2.
3.
It is anticipated that future climatic warming following the currently enhanced greenhouse effect will change the distribution limits of many vascular plant species. Using annual accumulated respiration equivalents, calculated from January and July mean temperatures and total annual precipitation, simple presence–absence response surface plots are constructed for 1521 native vascular-plant species in 229 75×75-km grid squares within Fennoscandia. The contemporary occurrences in relation to present-day climate and to predicted changes in climate (and hence annual accumulated respiration equivalents) are used to predict possible future immigrations and extinctions within each grid square. The percentage of potential change in species richness for each grid square is estimated from these predictions. Results from this study suggest a mean increase in species richness per grid square of 26%. Increases in species richness are greatest in the southern parts of the alpine/boreal regions in Fennoscandia. There are ten species that potentially may become extinct in Fennoscandia as a result of predicted climatic warming. Possible conservation strategies to protect such endangered species are outlined.  相似文献   

4.
The study of changes in species richness and composition along rivers has focused on large spatial scales. It has been ignored that in different sections of the river (high mountain area, middle zone, and mouth of the river) the specific environmental conditions can generate different longitudinal patterns of the species richness and composition. In this study, we determine whether species richness and composition of the riparian plant communities change along a mountain river and whether these changes are related to environmental variables. We expect an increase in species richness and turnover along the river, that the upstream communities would be a subset of the downstream communities, and that such would be related to edaphic and hydrologic conditions. To test this, we sampled three strata of the riparian vegetation (upper: individuals with <1 cm of ND, middle: individuals with >1 cm of ND, low: individuals with >1 m tall) in a set of 15 sites that we place along a mountain river. Additionally, we recorded topographic, hydrological, morphological, and soil variables. We performed correlation analyzes to determine whether changes in species richness and turnover were related to increased distance to the origin of the river. Also, we obtained the nestedness and evaluated the importance of environmental variables with GLM, LASSO regression, and CCA. With the increase in distance, the species richness decreases in the upper stratum, but not in the middle and the low stratum (although the highest values were observed near the origin of the river), the turnover increase in all strata and the upstream communities were not a subset of the downstream communities. The changes in species richness and composition were related to topographic (altitude), hydrological (flow), and edaphic (conductivity and pH) variables. Our results indicate that at small spatial scales the patterns of richness and composition differ from what has been found at larger spatial scales and that these patterns are associated with environmental changes in the strong altitude gradients of mountain rivers.  相似文献   

5.
Climate change is resulting in shifts in species’ ranges as species inhabit new climatically suitable areas. A key factor affecting range‐shifts is the interaction with predators. Small mammals, being primary seed predators and dispersers in forest ecosystems, may play a major role in determining which plant species will successfully expand and the rate at which range‐shifts will occur. Plants dispersing seeds beyond the species’ current range limits will encounter seed predators to which these seeds are novel; however, empirical studies of seed predator–novel seed interactions are lacking. The aims of our study were to: 1) quantify seed selection by small mammals presented with ‘novel’ seeds; 2) quantify the post‐selection fate of ‘novel’ seeds; and 3) identify seed traits that affect seed selection and post‐selection seed fate. We designed a field experiment exposing small mammal communities to novel seeds produced by plants expected to shift their ranges in response to climate change. We matched novel seeds with reference ‘familiar’ seeds and studied key steps defining interactions between small mammals and novel seeds. We found that the probability of selection of a novel seed varied among species and was, at times, higher than the selection probability of familiar seeds. Key traits that affected seed selection and the distance a seed was dispersed for caching were shell hardness and seed mass. We also found that 33% of dispersed seeds were cached in optimal germination sites (e.g. within fallen logs and buried under the leaf litter mat). Through seed emergence trials we found that emergence was higher for larger seeds, suggesting that the role of small mammals may be modulated by emergence rates. Our results suggest that the interaction between small mammals and novel seeds may have cascading effects on climate‐induced plant range shifts and community composition.  相似文献   

6.
Species are predicted to shift their distributions upslope or poleward in response to global warming. This prediction is supported by a growing number of studies documenting species migrations in temperate systems but remains poorly tested for tropical species, and especially for tropical plant species. We analyzed changes in tree species composition in a network of 10 annually censused 1‐ha plots spanning an altitudinal gradient of 70–2800 m elevation in Costa Rica. Specifically, we combined plot data with herbarium records (accessed through GBIF) to test if the plots' community temperature scores (CTS, average thermal mean of constituent species weighted by basal area) have increased over the past decade as is predicted by climate‐driven species migrations. In addition, we quantified the contributions of stem growth, recruitment, and mortality to the observed patterns. Supporting our a priori hypothesis of upward species migrations, we found that there have been consistent directional shifts in the composition of the plots, such that the relative abundance of lowland species, and hence CTS, increased in 90% of plots. The rate of the observed compositional shifts corresponds to a mean thermal migration rate (TMR) of 0.0065 °C yr?1 (95% CI = 0.0005–0.0132 °C yr?1). While the overall TMR is slower than predicted based on concurrent regional warming of 0.0167 °C yr?1, migrations were on pace with warming in 4 of the 10 plots. The observed shifts in composition were driven primarily by mortality events (i.e., the disproportionate death of highland vs. lowland species), suggesting that individuals of many tropical tree species will not be able to tolerate future warming and thus their persistence in the face of climate change will depend on successful migrations. Unfortunately, in Costa Rica and elsewhere, land area inevitably decreases at higher elevations; hence, even species that are able to migrate successfully will face heightened risks of extinction.  相似文献   

7.
8.
There have been numerous attempts to synthesize the results of local‐scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local‐scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome–driver combinations we have identified as most critical in terms of where local‐scale species richness change studies are lacking include the following: land‐use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local‐scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.  相似文献   

9.
Aim To identify potential source and sink locations for climate‐driven species range shifts in Europe since the Last Glacial Maximum (LGM). Location Europe. Methods We developed a new approach combining past‐climate simulations with the concept of analogous climate space. Our index gives a continuous measure of the potential of a location to have acted as a source or a sink for species that have shifted their ranges since the LGM. High glacial source potential is indicated by LGM climatic conditions that are widespread now; high post‐glacial sink potential is indicated by current climatic conditions that were widespread at the LGM. The degree of isolation of source and sink areas was calculated as the median distance to areas with analogous climate conditions. Results We identified areas of high glacial source potential in the previously recognized refugial areas in the southern European peninsulas, but also in large areas in central‐western Europe. The most climatically isolated source areas were located in northern Spain, in north‐western Europe and in eastern Turkey. From here species would have had to cover substantial distances to find current climate conditions analogous to LGM conditions of these areas. Areas with high post‐glacial sink potential were mainly located in Fennoscandia and in central and south‐eastern Europe. Some of the most isolated sink areas were located in the Spanish highlands and around the Baltic Sea. Main conclusions Our species‐independent approach successfully identified previously recognized glacial refugial areas with high source potential for species range shifts in southern Europe and in addition highlighted other potential source areas in central Europe. This study offers new insights into how the distribution of past and current climatic conditions may have influenced past species range shifts and current large‐scale biodiversity patterns.  相似文献   

10.
11.
Ecuador has some of the greatest biodiversity in the world, sheltering global biodiversity hotspots in lowland and mountain regions. Climate change will likely have a major effect on these regions, but the consequences for faunal diversity and conservation remain unclear. To address this issue, we used an ensemble of eight species distribution models to predict future shifts and identify areas of high changes in species richness and species turnover for 201 mammals. We projected the distributions using two different climate change scenarios at the 2050 horizon and contrasted two extreme dispersal scenarios (no dispersal vs. full dispersal). Our results showed extended distributional shifts all over the country. For most groups, our results predicted that the current diversity of mammals in Ecuador would decrease significantly under all climate change scenarios and dispersal assumptions. The Northern Andes and the Amazonian region would remain diversity hotspots but with a significant decrease in the number of species. All predictions, including the most conservative scenarios in terms of dispersal and climate change, predicted major changes in the distribution of mammalian species diversity in Ecuador. Primates might be the most severely affected because they would have fewer suitable areas, compared with other mammals. Our work emphasizes the need for sound conservation strategies in Ecuador to mitigate the effects of climate change  相似文献   

12.
13.
Plant community may provide products and services to humans. However, patterns and drivers of community stability along a precipitation gradient remain unclear. A regional‐scale transect survey was conducted over a 3‐year period from 2013 to 2015, along a precipitation gradient from 275 to 555 mm and spanning 440 km in length from west to east in a temperate semiarid grassland of northern China, a central part of the Eurasian steppe. Our study provided regional‐scale evidence that the community stability increased with increasing precipitation in the semiarid ecosystem. The patterns of community stability along a precipitation gradient were ascribed to community composition and community dynamics, such as species richness and species asynchrony, rather than the abiotic effect of precipitation. Species richness regulated the temporal mean (μ) of aboveground net primary productivity (ANPP), while species asynchrony regulated the temporal standard deviation (σ) of ANPP, which in turn contributed to community stability. Our findings highlight the crucial role of community composition and community dynamics in regulating community stability under climate change.  相似文献   

14.
15.
Climate change is altering the rate and distribution of primary production in the world's oceans. Primary production is critical to maintaining biodiversity and supporting fishery catches, but predicting the response of populations to primary production change is complicated by predation and competition interactions. We simulated the effects of change in primary production on diverse marine ecosystems across a wide latitudinal range in Australia using the marine food web model Ecosim. We link models of primary production of lower trophic levels (phytoplankton and benthic producers) under climate change with Ecosim to predict changes in fishery catch, fishery value, biomass of animals of conservation interest, and indicators of community composition. Under a plausible climate change scenario, primary production will increase around Australia and generally this benefits fisheries catch and value and leads to increased biomass of threatened marine animals such as turtles and sharks. However, community composition is not strongly affected. Sensitivity analyses indicate overall positive linear responses of functional groups to primary production change. Responses are robust to the ecosystem type and the complexity of the model used. However, model formulations with more complex predation and competition interactions can reverse the expected responses for some species, resulting in catch declines for some fished species and localized declines of turtle and marine mammal populations under primary productivity increases. We conclude that climate‐driven primary production change needs to be considered by marine ecosystem managers and more specifically, that production increases can simultaneously benefit fisheries and conservation. Greater focus on incorporating predation and competition interactions into models will significantly improve the ability to identify species and industries most at risk from climate change.  相似文献   

16.
Abstract Currently there is no single accepted hypothesis to explain gall‐forming insect species richness at a particular locality. Hygrothermal stress, soil nutrient availability, plant species richness, plant structural complexity, plant family or genus size, and host plant geographical range size have all been implicated in the determination of gall‐forming insect species richness. Previous studies of such richness at xeric sites have included predominantly scleromorphic vegetation, usually on nutrient‐poor soils. This study is the first to investigate gall‐forming insect species richness of xeric, non‐scleromorphic vegetation. Two habitat types were sampled at each of five localities across a rainfall gradient in the savanna biome of South Africa. The habitat types differed with respect to plant species composition and topography. Gall‐forming insect species richness did not increase with increasing hygrothermal stress or decreasing soil fertility. Rather, gall‐forming insect species richness was largely dependent on the presence of Terminalia sericea as well as other members of the Combretaceae and Mimosaceae. Plots where all these taxa were present had the highest gall‐forming insect species richness, up to 15 species, whereas plots with none of these taxa had a maximum of four galling‐insect species. Despite herb, shrub and tree strata not differing in gall‐forming insect species richness, insect galls were more common on woody than non‐woody plants. Also, stem galls were more frequent than apical or leaf galls. An alternative hypothesis to explain local gall‐forming insect species richness is suggested: galling insects may preferentially select those plant species with characteristics such as chemical toxicity, mechanical strength, degree of lignification or longevity that can be manipulated to benefit the galler. Thus plant community composition should be considered when attempting to explain gall‐forming insect species richness patterns.  相似文献   

17.
18.
19.
20.
Predicted climate change in the Andes will require plant species to migrate upslope to avoid extinction. Central to predictions of species responses to climate change is an understanding of species distributions along environmental gradients. Environmental gradients are frequently modelled as abiotic, but biotic interactions can play important roles in setting species distributions, abundances, and life history traits. Biotic interactions also have the potential to influence species responses to climate change, yet they remain mostly unquantified. An important interaction long studied in tropical forests is postdispersal seed predation which has been shown to affect the population dynamics, community structure, and diversity of plant species in time and space. This paper presents a comparative seed predation study of 24 species of tropical trees across a 2.5 km elevation gradient in the Peruvian Andes and quantifies seed predation variation across the elevational gradient. We then use demographic modelling to assess effects of the observed variation in seed predation on population growth rates in response to observed increasing temperatures in the area. We found marked variation among species in total seed predation depending on the major seed predator of the species and consistent changes in seed predation across the gradient. There was a significant increase in seed survival with increasing elevation, a trend that appears to be driven by regulation of seed predators via top–down forces in the lowlands giving way to bottom–up (productivity) regulation at mid‐ to high elevations, resulting in a ninefold increase in effective fecundity for trees at high elevations. This potential increase in seed crop size strongly affects modelled plant population growth and seed dispersal distances, increasing population migration potential in the face of climate change. These results also indicate that species interactions can have effects on par with climate in species responses to global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号