首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halyomorpha brevis (Heteroptera: Pentatomidae) produces adults with different color patterns, most noticeable in the sternum. The color, ranging from ivory to red, depends on the extent of the accumulation of red pigment. The present work investigated the effects of photoperiod, temperature and aging on the pigmentation. The red pigment was identified as erythropterin by comparing the Rf with standard pteridines in paper chromatography in three solvent systems. Erythropterin was found in all organs, red or light red. Uric acid was detected prominently in ivory or light red sternum. A negative correlation was found between the extent of red pigmentation and that of uric acid content. The relative proportion of males and females with a red sternum progressively increased as they aged from day 0 to day 20 after adult emergence, particularly in males reared under a long day (non-diapausing). In males, an age-dependent decrease in red pigmentation was observed in the gastric ceca and tracheae. The sternum was lighter in short-day adults (diapausing) than that in non-diapausing adults at the same age, and the latter never achieved the intense red color. The possible functions of pteridines are discussed.  相似文献   

2.
By using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), five different pteridines have been quantified in extracts from Pyrrhocoris apterus: neopterin, isoxanthopterin, isoxantholumazine (violapterin), 7-methylxanthopterin, and erythropterin. Biopterin was also detected using HPLC. Pteridines have been analyzed separately in bodies and eyes of the wild type regarding developmental stage and sex. The pteridine content in both bodies and eyes increased from nymphs to 2-day-old adults. After this period, the concentration of pteridines in the eyes of adults remained approximately constant, while in the bodies isoxantholumazine, 7-methylxanthopterin, and isoxanthopterin kept increasing until 20 days. Considering the total amount of pteridines per insect, no qualitative or quantitative differences between males and females have been observed except a lower concentration of erythropterin in female bodies. But when pteridines are analyzed per unit body weight, a lower amount of pteridines is always detected in females due to its bigger size. A new body-color mutant, the yolk body mutant, that goes through developmental colour changes, was also analyzed during development, showing a general deficient accumulation of all pteridines, especially of 7-methylxanthopterin and isoxantholumazine in adult bodies. The effect on pteridine content of three other recessive (white, yellow, mosaic) and two dominant (Pale and Apricot) body-color mutations, has also been studied. A specific pteridine pattern different from the wild type was obtained for each mutant. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The fine structure and the composition of pteridine pigments of erythrophores in adults of the swordtail fish, Xiphophorus helleri, were studied by means of cytochemistry, paper chromatography, ionophoresis, centrifugal fractionation, and electron microscopy. It was found that water-soluble pigments of erythrophores consisted exclusively of pteridine derivatives including large amounts of drosopterin, isodrosopterin, neodrosopterin, and moderate amounts of sepiapterin. While these substances were responsible for red pigmentation, moderate quantities of colorless pteridines, biopterin, Rana-chrome 3, xanthopterin, isoxanthopterin, and others, were also detectable. The ultrastructure of the erythrophore is characterized by numerous pigment granules and a well developed tubular endoplasmic reticulum. The former consist of a three-layered limiting membrane and inner lamellae which appear to be whorl-like due to a concentric arrangement of parallel membranes. All of the mentioned pteridines are primarily contained in this organelle which is designated, accordingly, "pterinosome." The possible functions of erythrophores and pterinosomes are discussed in the light of their structure and pigmentary constitution.  相似文献   

4.
Melanin‐based coloration is widespread among vertebrates, but the adaptive function of this trait remains poorly known. Recently, it has been shown that differently coloured individuals have different abilities to cope with parasites. This correlation between melanin‐based coloration and immunity could be explained by the pleiotropic effects of genes coding for melanin pigmentation on the immune system (‘genetic link’ hypothesis) but also because differently coloured individuals may exploit alternative habitats varying in parasite exposure, which leads to different development of the immune function (‘exposure’ hypothesis). As feral pigeons Columba livia are genetically polymorphic with respect to melanic coloration, they constitute an ideal model system to address such hypotheses. In this study, we showed that darker melanic individuals had a lower endoparasite intensity (reflecting host susceptibility) and had a greater cellular immune response to PHA injection than paler ones, whereas parasite prevalence (reflecting exposure to vectors) was similar between colorations. These results provide a correlative support of the ‘genetic link’ hypothesis: differently coloured individuals might be similarly exposed to parasites but darker ones might have a better ability to control the infection. This suggests that parasitism could play a crucial role in the maintenance of colour polymorphism in natural populations, which opens the interesting possibility that differently coloured individuals could be adapted to alternative environments varying in parasite diversity and exposure.  相似文献   

5.
Zebrafish esrom mutants have an unusual combination of phenotypes: in addition to a defect in the projection of retinal axons, they have reduced yellow pigmentation. Here, we investigate the pigment phenotype and, from this, provide evidence for an unexpected defect in retinal neurons. Esrom is not required for the differentiation of neural crest precursors into pigment cells, nor is it essential for cell migration, pigment granule biogenesis, or translocation. Instead, loss of yellow color is caused by a deficiency of sepiapterin, a yellow pteridine. The level of several other pteridines is also affected in mutants. Importantly, the cofactor tetrahydrobiopterin (BH4) is drastically reduced in esrom mutants. Mutant retinal neurons also appear deficient in this pteridine. BH4-synthesizing enzymes are active in mutants, indicating a defect in the regulation rather than production of enzymes. Esrom has recently been identified as an ortholog of PAM (protein associated with c-myc), a very large protein involved in synaptogenesis in Drosophila and C. elegans. These data thus introduce a new regulator of pteridine synthesis in a vertebrate and establish a function for the Esrom protein family outside synaptogenesis. They also raise the possibility that neuronal defects are due in part to an abnormality in pteridine synthesis.  相似文献   

6.
Larval cultures of the flesh-fly Sarcophaga argyrostoma maintained in circadian ‘resonance’ experiments produced a high incidence of pupal diapause when the period of the light cycle was close to (T) 24, 48 or 72 hr, but a low incidence of diapause at T 36, 60 or 84 hr. Cultures pre-programmed for diapause by exposing pregnant females to long nights indicated the induction of non-diapause development at T 36, 60 and 84, whereas cultures pre-programmed for diapause-free development by exposing females to continuous light indicated the induction of diapause at T 24, 48 and 72.Raising the temperature reduced the heights of the diapause peaks whereas lowering the temperature raised them. With progeny from long-night-reared flies the lowest temperature tested (18°C) produced a result indistinguishable from an ‘hour-glass’ response, warning that ‘negative’ resonance experiments may merely indicate non-permissive conditions for demonstrating the involvement of circadian rhythmicity in insect photoperiodism.The results of the ‘resonance’ experiments and the effects of temperature are interpreted in terms of a multioscillator ‘external coincidence-photoperiodic counter’ model for the clock.  相似文献   

7.
Fluorescence spectrophotometry was used to assess the possible use of pteridines in the compound eyes to estimate the age of adult screwworms, Cochliomyia hominivorax (Coquerel). Factors affecting the quantities of pteridines include temperature and head size. No difference in pteridine levels was found among flies fed protein or carbohydrate. A regression model for estimating the age of female screwworms was constructed. The model uses head capsule size and relative pteridine quantities and assumes a constant body temperature of 30 degrees C. This regression formula has an r2 of 0.74. Our study extends the use of pteridine accumulation for age determination from obligate sanguinivorous Diptera to an autogenous species that feeds facultatively on nectar and wound exudates. The technique appears to provide a valid means to determine age of these flies.  相似文献   

8.
It is demonstrated that the strong fluorescence of the ejaculatory bulb of Drosophila melanogaster males is caused by the presence of pteridines. The pteridine composition in the bulb is affected by the mutations ry2 and ma-lF1 in which isoxanthopterin has also been detected. Our results show that the bulbs of wild-type and white-eyed mutant males possess the same pteridines. Some data suggest that the bulbal pteridines originate from the testis region. Partly on the basis of former histochemical findings it is suggested that in the bulbal cavity the pH is high favouring the fluorescent dihydro-states of the pteridines present. All these and additional literature data on the ejaculatory bulb are discussed in connection with various biological processes. Some internal larval structures in which pteridines play or might play a functional role were found to present autofluorescence.  相似文献   

9.

Introduction

Urinary pteridines are putative molecular biomarkers for noninvasive cancer screening and prognostication. Central to their translational biomarker development is the need to understand the sources and extent of their non-epidemiological variation.

Objectives

This study was designed to characterize the two primary sources of urinary pteridine variance: daily variation and the effect of dietary folate.

Methods

Daily variation was studied by collecting urine specimens (n = 81) three times daily for 3 days. The effect of dietary folate was investigated in a treatment study in which urine specimens (n = 168) were collected daily during a control week and a treatment week during which participants received dietary folate supplements. Measurements of six urinary pteridines were made using high-performance liquid chromatography–tandem mass spectrometry. Coefficients of variation were calculated to characterize daily variance between and within subjects, while nearest neighbor non-parametric analyses were used to identify diurnal patterns and measure dietary folate effects.

Results

Daily variance was approximately 35 % RSD for both within-day and between-day periods for most pteridines. Diurnal patterns in response to circadian rhythms were similarly observed for urinary pteridines. Folate supplementation was shown to alter urinary pteridine profiles in a pathway dependent manner, suggesting that dietary folate may regulate endogenous neopterin and biopterin biosynthesis.

Conclusions

Urinary pteridine levels were found to be responsive to both daily variation and folate supplementation. These findings provide new insights into pteridine biosynthesis and regulation as well as useful information for the design of future clinical translational research.
  相似文献   

10.
The albino mutant strain in the woodlice, Armadillidium vulgare, was investigated with respect to the yellow patterns on the dorsal integument. Pigment cells were observed with electron microscope in order to determine the cell types of yellow markings. Quantitative analyses of pteridines in the albino were carried out by HPLC. The result indicated that the albino integument contain sepiapterin, biopterin, pterin, isoxanthopterin as in the wild type and the red mutant strain. The total amount of the four pteridines in the albino was about half as much as that in the red phenotype for both males and females, respectively. Males and females showed almost the same totals and ratios of the four pteridines in the albino and red phenotypes. Therefore, pteridine contents in both phenotypes of A. vulgare may not be related to the activity of androgenic gland hormone. Yellow chromatophores of the albino and red phenotypes were morphologically identical, emitting a yellow fluorescence. These cells contained numerous electron-lucent pigment organelles which were similar to pteridine granules of the wild type.  相似文献   

11.
Relationships between male social behaviour and female reproductive coloration in the iguanid lizard Holbrookia propinqua were examined by introduction of tethered non-resident lizards into the territories of adult males. Introduced lizards were plainly coloured females, females having bright reproductive coloration, adult males, plain females painted to resemble brightly coloured females, bright females painted to mimic plain females, and males painted with the bright yellow and orange secondary sexual coloration of females. Resident males courted all unpainted females, despite being aggressively rejected by the brightly coloured ones. They also courted all but two females in each of the painted groups. All unaltered non-resident males were challenged, attacked or subjected to other aggressive behaviour by residents, but all non-resident males painted to resemble bright females were courted. This differential treatment is highly significant. It clearly demonstrates that the bright female pigmentation functions in sex recognition, identifying a female to males. Other stimuli, especially pheromonal and behavioural cues, may contribute to sex recognition. Because sex recognition alone seems insufficient to account for the evolution of bright female coloration in H. propinqua and several other iguanids, several proposed additional functions are discussed.  相似文献   

12.
In epidermal cells of Dysdercus species, two types of pigment granules were detected using both light and electron microscopic methods; the granules differed in colour, size, distribution and osmiophily. Red (D. intermedius) and yellow (D. nigrofasciatus) epidermal cells contained both types of granules, but in white cells only one type was present. Chromatographic analyses showed that the larger granules were more transparent to electrons, and contained uric acid, while the smaller ones contained erythropterin, became coloured later, and were osmiophilic. In accordance with these findings, in the testes of D. intermedius both granule types were present, but in the testes of D. nigrofasciatus only those containing erythropterin. The number of granules per cell varied with the species and developmental stage. Epidermal cells of D. intermedius contained more erythropterin granules than those of D. nigrofasciatus, the reverse occurring in the testes. This pattern corresponded to the visible colouration of the insects. As the development progressed, a decrease of the red and an increase of the white granules took place in the coloured epidermal cells. The main amount of pteridines, except isoxanthopterin, was accumulated in the integument of the insects studied. Chemical and histological data showed the influence of pterins on insect colouration. Orange, yellow and red colours were caused by different amounts of erythropterin containing special granules in the epidermal cells, and the white colour only by uric acid containing granules. A partial melanization of the cuticle resulted in dark spots below which pteridines were deposited additionally in the epidermal cells. Considering erythropterin, the quantitative chemical data are in accordance with the histological ones and also with the colouration externally visible. Intensively red coloured stages had a higher concentration of erythropterin and more corresponding granules than the light-red coloured ones; the lowest amount was found in yellow coloured insects. Therefore, the pigmentation effect of erythropterin, which reached from yellow to orange and red, depended on its concentration and played the most important role in the colouration of the Dysdercus species studied, uric acid was responsible for the colouration of the white parts of the integument.  相似文献   

13.
Megoura produces parthenogenetic virginoparae in long day conditions, gamic oviparae in short days. The nature of this photoperiodic response has been analysed by rearing parent apterae in a wide range of circadian and non-circadian light cycles. By varying the light and dark components independently in a two-component cycle it has been established that the time measuring function is associated primarily with the dark period. There is no evidence that an endogenous circadian oscillation is implicated: thus (a) the ‘short day’ response is abolished by ‘night interruptions’ positioned in the early or late night. But this bimodal response pattern remains unchanged when the duration of the ‘main’ photoperiod is varied from ca. 6 hr to at least 25·5 hr. The stability of the maxima within the scotophase is inconsistent with the ‘coincidence’ models of photoperiodic timing that have been proposed. It is suggested that the essential timing process operates on the hour-glass principle, beginning anew with the onset of each period of darkness; (b) night interruption experiments employing very long (up to 72 hr) scanned dark periods yielded response maxima explicable in terms of the hour-glass hypothesis but did not reveal any circadian relationship between the maxima.The ‘dark reaction’ comprises a sequence of four stages, definable by the effects of light. Stage 1, extending from dark hr 0 to ca. 2·5, is fully photoreversible: at the next dark period the entire timing sequence is repeated up to the 9·5 hr critical night length. Towards the end of stage 1 reversibility is gradually lost and after a light interruption the reaction is resumed from a later time equivalent than dark hr 0; the subsequent critical night length is therefore reduced. The extent of the photoreversal is related to light duration. The period of maximum light insensitivity (stage 2) is attained at the end of the fourth hour. From ca. dark hr 5 to just short of the critical night length light exerts an increasingly promotive action which favours the production of virginoparae. This dark process is not photoreversible. Stage 4, which begins at hr 9·5, marks the end of the timing sequence. Light will not then annul the non-promotive action of the previous long night.Light has three effects which are determined by its duration and position within the cycle. The two terminal effects, mentioned above, are associated with the interception of dark stages 1 and 3 by either short (1 hr) or longer photoperiods. Light also prepares or primes the dark period timer. Thus the critical length is increased, and timing accuracy lost, if the preceding photoperiod is less than ca. 6 hr. Light during stage 4 has a priming action but no terminal function. Repeated cycles are ‘read’ in various ways, depending on the cycle structure. For example, if light intercepts stage 3, a two-component cycle is interpreted as the overlapping sequence light/dark/light. One and the same photoperiod then acts terminally in respect of the preceding dark period and as a primer for the next dark period.There is also a mechanism for summing the promotive effects produced by repeated interruption of dark stage 3. With complex (four-component) cycles both halves of the same cycle may contribute. ‘Product accumulation’ falls below threshold if the frequency of presentation of a given promotive cycle is too low. This occurs if there are very long, relatively non-promotive dark components. Such cycles are accepted as ‘continuous darkness’.  相似文献   

14.
Summary The action of genew bl andw m4 on the eye-pteridines ofDrosophila melanogaster under the influence of different temperatures is studied. Whereas inw bl the temperature unfavorable for the synthesis of the eye-pteridines (25°C) results in a marked decrease of all pteridines, inw m4 the unfavorable temperature (18°C) results in a decrease of the red pteridine, but causes an accumulation of the tetrahydrobiopterin-compound and the yellow pteridine. InCalliphora erythrocephala genew causes accumulation of the yellow pteridine but a marked decrease of the tetrahydrobiopterin-compound. The relationships between the tetrahydrobiopterin-compound, the yellow pteridine (which probably is the dihydro-product) and the red colored end-product are discussed.

Mit 2 Textabbildungen  相似文献   

15.
Stages of Metaseiulus occidentalis sensitive to photoperiod induction of diapause were determined by transferring various stadia into diapause-inducing conditions, and rearing them until adult females could be scored for reproductive condition. When eggs were transferred to 10 hr light at 19°C from 24 hr light at 25°C and the mites reared to adults, 92 per cent entered diapause. When larvae and all subsequent stages were kept under the inductive conditions, 62 per cent of adult females diapaused. Mites transferred as protonymphs into inductive conditions yielded only 10 per cent in diapause, and mites transferred as deutonymphs or newly emerged females did not enter diapause.However, adult females reared from eggs at 19°C under 12 hr light (which is near the critical photophase of 11·2 hr at 19°C) showed an unexpected sensitivity to photoperiod. Some newly emerged females oviposited upon transfer to an 8 hr photophase at 19°C. Some then stopped ovipositing and apparently entered diapause; these females resumed ovipositing after intervals ranging from 34 to 100 days. This was termed ‘switching’ into diapause. Some females reared under a 16 hr photophase at 19°C ‘switched’ also upon transfer as adults to shorter photophases—either 8 or 12 hr at 19°C. Thus, ‘switching’ may be due to transfer to shorter photophases. Promptness of mating vs delayed mating allowed ‘switching’ to be more easily detected.  相似文献   

16.
Reduced pteridines are required for a number of important cellular functions. Trypanosomatid parasites, unlike their mammalian hosts, are pteridine auxotrophs and salvage the precursor pteridines from the host and reduce them to the respective biologically active tetrahydro forms using parasite-encoded enzymes. These enzymes may offer selective drug targets. In Leishmania, pteridine reductase 1 (PTR1), the primary enzyme for reducing pterins, is also responsible for resistance to antifolate drugs. Typically, PTR1 is more active with fully oxidized biopterin and folate than with their reduced counterparts. We have identified an enzyme, TcPTR2 of Trypanosoma cruzi, which though very similar to PTR1 in its primary sequence, can reduce only dihydrobiopterin and dihydrofolate and not oxidized pteridines. The structures of an inhibitor (methotrexate) and a substrate (dihydrofolate) complex of this enzyme demonstrate that the orientation of the substrate and the inhibitor in the active site of TcPTR2 are different from each other. However, the orientation of each ligand is similar to that of the corresponding ligand in Leishmania major PTR1 complexes.  相似文献   

17.
Patterns of spontaneous and induced daily torpor were measured in the Afrotropical pouched mouse (77–115?g), Saccostomus campestris, in response to photoperiod, temperature, and food deprivation, using temperature telemetry. Photoperiod had no influence on the incidence, depth, or duration of daily torpor in either males and females. Although the testis size index decreased in response to food deprivation and photoperiod by a maximum of 24%, full testis regression did not occur. Torpor bout duration was, on average, 5.3?h, independent of photoperiod and ambient temperature. Males did not enter torpor in response to food deprivation but did in response to low ambient temperature, though significantly less frequently than females. At normothermia, the body temperatures (daily minimum, mean, maximum) of males were significantly lower than those of females. Minimum body temperatures of both males and females during torpor did not fall below 20?°C at an ambient temperature of 15?°C. The patterns of torpor measured here differ from those observed in species from strongly seasonal environments. They suggest adaptation to an environment rendered unpredictable by the El Niño Southern Oscillations. As an aseasonal, opportunistic breeder capable of year-round adaptive hypothermia, the pouched mouse represents an excellent model animal for research on physiological and behavioral adaptations to unpredictable environments.  相似文献   

18.
Birds display a rainbow of eye colours, but this trait has been little studied compared with plumage coloration. Avian eye colour variation occurs at all phylogenetic scales: it can be conserved throughout whole families or vary within one species, yet the evolutionary importance of this eye colour variation is under-studied. Here, we summarize knowledge of the causes of eye colour variation at three primary levels: mechanistic, genetic and evolutionary. Mechanistically, we show that avian iris pigments include melanin and carotenoids, which also play major roles in plumage colour, as well as purines and pteridines, which are often found as pigments in non-avian taxa. Genetically, we survey classical breeding studies and recent genomic work on domestic birds that have identified potential ‘eye colour genes’, including one associated with pteridine pigmentation in pigeons. Finally, from an evolutionary standpoint, we present and discuss several hypotheses explaining the adaptive significance of eye colour variation. Many of these hypotheses suggest that bird eye colour plays an important role in intraspecific signalling, particularly as an indicator of age or mate quality, although the importance of eye colour may differ between species and few evolutionary hypotheses have been directly tested. We suggest that future studies of avian eye colour should consider all three levels, including broad-scale iris pigment analyses across bird species, genome sequencing studies to identify loci associated with eye colour variation, and behavioural experiments and comparative phylogenetic analyses to test adaptive hypotheses. By examining these proximate and ultimate causes of eye colour variation in birds, we hope that our review will encourage future research to understand the ecological and evolutionary significance of this striking avian trait.  相似文献   

19.
Menidia beryllina (Cope) is an annual species that inhabits coastal estuaries along the east coast of the United States from Cape Cod to the Gulf of Mexico. In Rhode Island, USA, its peak spawning time and the duration of the spawning vary among years and estuaries. However, the onset of gonadal maturation is more consistent (early May), suggesting that it may be regulated by more consistent cues than those regulating spawning. To determine the effects of photoperiod and temperature on the regulation of the onset of maturation two laboratory experiments were conducted and the results compared to field observations. In the first experiment, fish collected from the field in February were exposed to each of four treatments: increasing photoperiod/increasing temperature; increasing photoperiod/low temperature; low photoperiod/increasing temperature; and low photoperiod/low temperature. Only fish exposed to both increasing photoperiod and increasing temperature were able to complete maturation. Fish exposed to low photoperiod and increasing temperature responded by enlarging their livers, a response that was also observed in field fish collected in the fall. Fish exposed to the remaining two treatments neither matured their gonads nor enlarged their livers. In the second experiment fish collected from the field in early March were exposed to three treatments with different photoperiod regimes (daylight constant at 9.5 h, increasing up to 12 h, or increasing up to 15 h) and one increasing temperature regime. Fish in the 9.5-h treatment initiated maturation but were not able to complete the process, those exposed to the 12-h photoperiod matured and spawned for a short period of time before the gonads began to regress, and those exposed to the 15-h photoperiod matured and spawned large numbers of eggs throughout the remainder of the experiment. The 9.5- and 12-h photoperiod exposures also resulted in accumulation of reserves in the liver in both females and males. The 15-h photoperiod treatment resulted in liver enlargement in females, which were undergoing vitellogenesis, but not in males. Males exposed to the 9.5- and 12-h photoperiod accumulated significantly more visceral fat than those exposed to the 15-h photoperiod. In females, the amount of visceral fat accumulated was inversely proportional to the hours of light. These findings suggest that this species has evolved mechanisms that enable it to anticipate the coming of winter as well as the coming of suitable breeding conditions and ensure that it exhibits the appropriate response at the appropriate time (reserve accumulation for the winter or gonad maturation in the spring).  相似文献   

20.
Indicator models of sexual selection suggest that signal honesty is maintained via costs of ornament expression. Carotenoid-based visual signals are a well-studied example, as carotenoids may be environmentally limited and impact signaler health. However, not all bright yellow, orange and red ornaments found in vertebrates are carotenoid-based; pteridine pigments may also produce these colors. We examine the contribution of carotenoid and pteridine pigments to the orange reproductive color of female striped plateau lizards (Sceloporus virgatus). This color ornament reliably indicates female mate quality, yet costs maintaining signal honesty are currently unknown. Dietary carotenoid manipulations did not affect orange color, and orange skin differed from surrounding white skin in drosopterin, not carotenoid, content. Further, orange color positively correlated with drosopterin, not carotenoid, concentration. Drosopterin-based female ornaments avoid the direct trade-offs of using carotenoids for ornament production vs egg production, thus may relax counter-selection against color ornament exaggeration in females. Direct experimentation is needed to determine the actual costs of pteridine-based ornaments. Like carotenoids, pteridines influence important biological processes, including immune and antioxidant function; predation and social costs may also be relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号