共查询到20条相似文献,搜索用时 3 毫秒
1.
2.
PATRICK C. TOBIN SUDHA NAGARKATTI† GREG LOEB‡ MICHAEL C. SAUNDERS† 《Global Change Biology》2008,14(5):951-957
Climate change can cause major changes to the dynamics of individual species and to those communities in which they interact. One effect of increasing temperatures is on insect voltinism, with the logical assumption that increases in surface temperatures would permit multivoltine species to increase the number of generations per year. Though insect development is primarily driven by temperature, most multivoltine insect species rely on photoperiodic cues, which do not change from year‐to‐year or in response to climate warming, to initiate diapause. Thus, the relationship between climate change and voltinism could be complex. We use a phenology model for grape berry moth, Paralobesia viteana (Clemens), which incorporates temperature‐dependent development and diapause termination, and photoperiod‐dependent diapause induction, to explore historical patterns in year‐to‐year voltinism fluctuations. We then extend this model to predict voltinism under varying scenarios of climate change to show the importance of both the quality and quantity of accumulated heat units. We also illustrate that increases in mean surface temperatures > 2 °C can have dramatic effects on insect voltinism by causing a shift in the ovipositional period that currently is subject to diapause‐inducing photoperiods. 相似文献
3.
The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species 总被引:9,自引:0,他引:9
RAYMOND J. C. CANNON 《Global Change Biology》1998,4(7):785-796
Recent estimates for global warming predict increases in global mean surface air temperatures (relative to 1990) of between 1 and 3.5 °C, by 2100. The impact of such changes on agricultural systems in mid- to high-latitude regions are predicted to be less severe than in low-latitude regions, and possibly even beneficial, although the influence of pests and diseases is rarely taken into account. Most studies have concluded that insect pests will generally become more abundant as temperatures increase, through a number of inter-related processes, including range extensions and phenological changes, as well as increased rates of population development, growth, migration and over-wintering. A gradual, continuing rise in atmospheric CO2 will affect pest species directly (i.e. the CO2 fertilization effect) and indirectly (via interactions with other environmental variables). However, individual species responses to elevated CO2 vary: consumption rates of insect herbivores generally increase, but this does not necessarily compensate fully for reduced leaf nitrogen. The consequent effects on performance are strongly mediated via the host species. Some recent experiments under elevated CO2 have suggested that aphids may become more serious pests, although other studies have discerned no significant effects on sap-feeding homopterans. However, few, if any of these experiments have fully considered the effects on pest population dynamics. Climate change is also considered from the perspective of changes in the distribution and abundance of species and communities. Marked changes in the distribution of well-documented species – including Odonata, Orthoptera and Lepidoptera – in north-western Europe, in response to unusually hot summers, provide useful indications of the potential effects of climate change. Migrant pests are expected to respond more quickly to climate change than plants, and may be able to colonize newly available crops/habitats. Range expansions, and the removal of edge effects, could result in the increased abundance of species presently near the northern limits of their ranges in the UK. However, barriers to range expansions, or shifts, may include biotic (competition, predation, parasitism and disease), as well as abiotic, factors. Climatic phenomena, ecosystem processes and human activities are interactive and interdependent, making long-term predictions extremely tenuous. Nevertheless, it appears prudent to prepare for the possibility of increases in the diversity and abundance of pest species in the UK, in the context of climate change. 相似文献
4.
The global distribution of cultivable lands: current patterns and sensitivity to possible climate change 总被引:9,自引:0,他引:9
Navin Ramankutty Jonathan A. Foley John Norman† Kevin McSweeney† 《Global Ecology and Biogeography》2002,11(5):377-392
Aim This study makes quantitative global estimates of land suitability for cultivation based on climate and soil constraints. It evaluates further the sensitivity of croplands to any possible changes in climate and atmospheric CO2 concentrations. Location The location is global, geographically explicit. Methods The methods used are spatial data synthesis and analysis and numerical modelling. Results There is a cropland ‘reserve’ of 120%, mainly in tropical South America and Africa. Our climate sensitivity analysis indicates that the southern provinces of Canada, north‐western and north‐central states of the United States, northern Europe, southern Former Soviet Union and the Manchurian plains of China are most sensitive to changes in temperature. The Great Plains region of the United States and north‐eastern China are most sensitive to changes in precipitation. The regions that are sensitive to precipitation change are also sensitive to changes in CO2, but the magnitude is small compared to the influence of direct climate change. We estimate that climate change, as simulated by global climate models, will expand cropland suitability by an additional 16%, mainly in the Northern Hemisphere high latitudes. However, the tropics (mainly Africa, northern South America, Mexico and Central America and Oceania) will experience a small decrease in suitability due to climate change. Main conclusions There is a large reserve of cultivable croplands, mainly in tropical South America and Africa. However, much of this land is under valuable forests or in protected areas. Furthermore, the tropical soils could potentially lose fertility very rapidly once the forest cover is removed. Regions that lie at the margins of temperature or precipitation limitation to cultivation are most sensitive to changes in climate and atmospheric CO2 concentration. It is anticipated that climate change will result in an increase in cropland suitability in the Northern Hemisphere high latitudes (mainly in developed nations), while the tropics will lose suitability (mainly in developing nations). 相似文献
5.
Marion Twomey Eva Brodte Ute Jacob Ulrich Brose Tasman P. Crowe Mark C. Emmerson 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1605):2971-2978
Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism–body mass and consumption–body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species'' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change. 相似文献
6.
WILFRIED THUILLER † GUY F. MIDGLEY ‡ GREG O. HUGHES § BASTIAN BOMHARD GILL DREW MICHAEL C. RUTHERFORD F. IAN WOODWARD¶ 《Global Change Biology》2006,12(5):759-776
We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ~2050 and ~2080. We used both niche‐based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life‐form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life‐formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north‐eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2– currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ~2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ~2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region. 相似文献
7.
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail''s body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail''s upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models. 相似文献
8.
气候变化对中国农作物虫害发生的影响 总被引:4,自引:0,他引:4
基于1961—2010年全国农区527个气象站点气象资料、全国病虫害资料以及农作物种植面积等资料,对全国虫害发生面积与气象因子采用相关分析法,分析了气象要素变化对虫害发生的影响。结果表明:气候变化背景下,年平均温度、平均降水强度分别以0.27℃.10a-1、0.24mm.(d.10a)-1的速度增长,年日照时数以47.40h.10a-1的速度减小;年降水量增长速率为0.14mm.10a-1,但波动较大;虫害发生面积率距平与平均温度、平均降水强度距平呈显著正相关,平均温度、平均降水强度分别每增加1℃、1mm.d-1,虫害发生面积率增加0.648、0.713,虫害发生面积将增加0.96、1.06亿hm2次;虫害发生面积率距平与年日照时数距平呈显著负相关,其每降低100h,虫害发生面积率增加0.40,虫害发生面积将增加0.59亿hm2次;总体上,虫害发生面积率距平与年降水量距平的关系不明显。虫害发生面积率距平与年平均小雨量、微雨量雨日数、小雨量雨日数距平呈显著负相关,3个因子分别每减少1mm、1d、1d,虫害发生面积率增加0.014、0.066、0.052,发生面积将增加0.02、0.10、0.08亿hm2次。 相似文献
9.
General circulation models predict increases in temperature and precipitation in the Arctic as the result of increases in atmospheric carbon dioxide concentrations. Arctic ecosystems are strongly constrained by temperature, and may be expected to be markedly influenced by climate change. Perturbation experiments have been used to predict how Arctic ecosystems will respond to global climatic change, but these have often simulated individual perturbations (e.g. temperature alone) and have largely been confined to the short Arctic summer. The importance of interactions between global change variables (e.g. CO2, temperature, precipitation) has rarely been examined, and much experimentation has been short-term. Similarly, very little experimentation has occurred in the winter when General circulation models predict the largest changes in climate will take place. Recent studies have clearly demonstrated that Arctic ecosystems are not dormant during the winter and thus much greater emphasis on experimentation during this period is essential to improve our understanding of how these ecosystems will respond to global change. This, combined with more long-term experimentation, direct observation of natural vegetation change (e.g. at the tundra/taiga boundary) and improvements in model predictions is necessary if we are to understand the future nature and extent of Arctic ecosystems in a changing climate. 相似文献
10.
Climate change may be a major threat to global biodiversity, especially to tropical species. Yet, why tropical species are more vulnerable to climate change remains unclear. Tropical species are thought to have narrower physiological tolerances to temperature, and they have already experienced a higher estimated frequency of climate-related local extinctions. These two patterns suggest that tropical species are more vulnerable to climate change because they have narrower thermal niche widths. However, no studies have tested whether species with narrower climatic niche widths for temperature have experienced more local extinctions, and if these narrower niche widths can explain the higher frequency of tropical local extinctions. Here, we test these ideas using resurvey data from 538 plant and animal species from 10 studies. We found that mean niche widths among species and the extent of climate change (increase in maximum annual temperatures) together explained most variation (>75%) in the frequency of local extinction among studies. Surprisingly, neither latitude nor occurrence in the tropics alone significantly predicted local extinction among studies, but latitude and niche widths were strongly inversely related. Niche width also significantly predicted local extinction among species, as well as among and (sometimes) within studies. Overall, niche width may offer a relatively simple and accessible predictor of the vulnerability of populations to climate change. Intriguingly, niche width has the best predictive power to explain extinction from global warming when it incorporates coldest yearly temperatures. 相似文献
11.
Gian-Reto Walther 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1549):2019-2024
There is ample evidence for ecological responses to recent climate change. Most studies to date have concentrated on the effects of climate change on individuals and species, with particular emphasis on the effects on phenology and physiology of organisms as well as changes in the distribution and range shifts of species. However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels. Also from this more complex perspective, recent case studies have emphasized evidence on the effects of climate change on biotic interactions and ecosystem services. This review highlights the ‘knowns’ but also ‘unknowns’ resulting from recent climate impact studies and reveals limitations of (linear) extrapolations from recent climate-induced responses of species to expected trends and magnitudes of future climate change. Hence, there is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively to focus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses. 相似文献
12.
Paulo Eduardo Menezes‐Silva Lucas Loram‐Loureno Rauander Douglas Ferreira Barros Alves Letícia Ferreira Sousa Sabrina Emanuella da Silva Almeida Fernanda Santos Farnese 《Ecology and evolution》2019,9(20):11979-11999
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho‐anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition. 相似文献
13.
Essie M. Rodgers 《Biology letters》2021,17(10)
The threat of excessive nutrient enrichment, or eutrophication, is intensifying across the globe as climate change progresses, presenting a major management challenge. Alterations in precipitation patterns and increases in temperature are increasing nutrient loadings in aquatic habitats and creating conditions that promote the proliferation of cyanobacterial blooms. The exacerbating effects of climate warming on eutrophication are well established, but we lack an in-depth understanding of how aquatic ectotherms respond to eutrophication and warming in tandem. Here, I provide a brief overview and critique of studies exploring the cumulative impacts of eutrophication and warming on aquatic ectotherms, and provide forward direction using mechanistically focused, multi-threat experiments to disentangle complex interactions. Evidence to date suggests that rapid warming will exacerbate the negative effects of eutrophication on aquatic ectotherms, but gradual warming will induce physiological remodelling that provides protection against nutrients and hypoxia. Moving forward, research will benefit from a greater focus on unveiling cause and effect mechanisms behind interactions and designing treatments that better mimic threat dynamics in nature. This approach will enable robust predictions of species responses to ongoing eutrophication and climate warming and enable the integration of climate warming into eutrophication management policies. 相似文献
14.
COLIN J. GARROWAY JEFF BOWMAN† TARA J. CASCADEN‡ GILLIAN L. HOLLOWAY§ CAROLYN G. MAHAN¶ JAY R. MALCOLM MICHAEL A. STEELE GREGORY TURNER†† PAUL J. WILSON‡‡ 《Global Change Biology》2010,16(1):113-121
There is now unequivocal evidence for global climate change; however, its potential impacts on evolutionary processes remain unclear. Many species have responded to contemporary climate change through shifts in their geographic range. This could lead to increased sympatry between recently diverged species; likely increasing the potential for hybridization. Recently, following a series of warm winters, southern flying squirrels ( Glaucomys volans ) in Ontario, Canada rapidly expanded their northern range limit resulting in increased sympatry with the closely related northern flying squirrel ( Glaucomys sabrinus ). This provided the opportunity to test the prediction that contemporary climate change can act as a catalyst creating conditions for the formation of hybrid zones. Following extensive sampling and molecular analyses (nuclear and mitochondrial DNA), we identified the occurrence of hybridization between sympatric G. sabrinus and G. volans . There was evidence of backcrossing but not of extensive introgession, consistent with the hypothesis of recent rather than historic hybridization. To our knowledge, this is the first report of hybrid zone formation following a range expansion induced by contemporary climate change. This is also the first report of hybridization between North American flying squirrel species. 相似文献
15.
To address how multiple, interacting climate drivers may affect plant–insect community associations, we sampled insects that naturally colonized a constructed old‐field plant community grown for over 2 years under simultaneous CO2, temperature, and water manipulation. Insects were sampled using a combination of sticky traps and vacuum sampling, identified to morphospecies and the insect community with respect to abundance, richness, and evenness quantified. Individuals were assigned to four broad feeding guilds in order to examine potential trophic level effects. Although there were occasional effects of CO2 and water treatment, the effects of warming on the insect community were large and consistent. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Nonmetric multidimensional scaling found that only temperature affected insect community composition, while a Sørensen similarity index showed less correspondence in the insect community between temperature treatments compared with CO2 or soil water treatments. Within the herbivore guild, elevated temperature significantly reduced richness and evenness. Corresponding reductions of diversity measures at higher trophic levels (i.e. parasitoids), along with the finding that herbivore richness was a significant predictor of parasitoid richness, suggest trophic‐level effects within the insect community. When the most abundant species were considered in temperature treatments, a small number of species increased in abundance at elevated temperature, while others declined compared with ambient temperature. Effects of temperature in the dominant insects demonstrated that treatment effects were limited to a relatively small number of morphospecies. Observed effects of elevated CO2 concentration on whole‐community foliar N concentration did not result in any effect on herbivores, which are probably the most susceptible guild to changes in plant nutritional quality. These results demonstrate that climatic warming may alter certain insect communities via effects on insect species most responsive to a higher temperature, contributing to a change in community structure. 相似文献
16.
Michael T. LeMoine Lisa A. Eby Chris G. Clancy Leslie G. Nyce Michael J. Jakober Dan J. Isaak 《Global Change Biology》2020,26(10):5492-5508
A broader understanding of how landscape resistance influences climate change vulnerability for many species is needed, as is an understanding of how barriers to dispersal may impact vulnerability. Freshwater biodiversity is at particular risk, but previous studies have focused on popular cold‐water fishes (e.g., salmon, trout, and char) with relatively large body sizes and mobility. Those fishes may be able to track habitat change more adeptly than less mobile species. Smaller, less mobile fishes are rarely represented in studies demonstrating effects of climate change, but depending on their thermal tolerance, they may be particularly vulnerable to environmental change. By revisiting 280 sites over a 20 year interval throughout a warming riverscape, we described changes in occupancy (i.e., site extirpation and colonization probabilities) and assessed the environmental conditions associated with those changes for four fishes spanning a range of body sizes, thermal and habitat preferences. Two larger‐bodied trout species exhibited small changes in site occupancy, with bull trout experiencing a 9.2% (95% CI = 8.3%–10.1%) reduction, mostly in warmer stream reaches, and westslope cutthroat trout experiencing a nonsignificant 1% increase. The small‐bodied cool water slimy sculpin was originally distributed broadly throughout the network and experienced a 48.0% (95% CI = 42.0%–54.0%) reduction in site occupancy with declines common in warmer stream reaches and areas subject to wildfire disturbances. The small‐bodied comparatively warmer water longnose dace primarily occupied larger streams and increased its occurrence in the lower portions of connected tributaries during the study period. Distribution shifts for sculpin and dace were significantly constrained by barriers, which included anthropogenic water diversions, natural step‐pools and cascades in steeper upstream reaches. Our results suggest that aquatic communities exhibit a range of responses to climate change, and that improving passage and fluvial connectivity will be important climate adaptation tactics for conserving aquatic biodiversity. 相似文献
17.
The Amboseli basin, a semi‐arid, open savannah area of southern Kenya, has experienced extensive changes in habitat since the early 1960's. The present report documents patterns of air temperature and rainfall in Amboseli for the 25‐year period beginning 1976. Daily temperatures increased dramatically throughout this time period, at a rate almost an order of magnitude greater than that attributed to global warming. Mean daily maximum temperature increased more than did daily minimum (0.275 vs. 0.071°C per annum). Although increases in mean daily maxima were documented for all months of the year, they were greatest during the hottest months, February and March. Annual rainfall varied more than four‐fold (x = 346.5 mm, SD = 120.0, range 132.0–553.4 mm), yet did not exhibit any directional or other regular pattern of variability among years over this same 25‐year period. Empirical as well as theoretical investigation of relations between such changes in climatic conditions and habitat characteristics are needed at local and regional as well as global scales. 相似文献
18.
Ivan Jari Robert J. Lennox Gregor Kalinkat Gor
in Cvijanovi Johannes Radinger 《Global Change Biology》2019,25(2):448-458
Climate change is expected to strongly affect freshwater fish communities. Combined with other anthropogenic drivers, the impacts may alter species spatio‐temporal distributions and contribute to population declines and local extinctions. To provide timely management and conservation of fishes, it is relevant to identify species that will be most impacted by climate change and those that will be resilient. Species traits are considered a promising source of information on characteristics that influence resilience to various environmental conditions and impacts. To this end, we collated life‐history traits and climatic niches of 443 European freshwater fish species and compared those identified as susceptible to climate change to those that are considered to be resilient. Significant differences were observed between the two groups in their distribution, life history, and climatic niche, with climate‐change‐susceptible species being distributed within the Mediterranean region, and being characterized by greater threat levels, lesser commercial relevance, lower vulnerability to fishing, smaller body and range size, and warmer thermal envelopes. Based on our results, we establish a list of species of highest priority for further research and monitoring regarding climate‐change susceptibility within Europe. The presented approach represents a promising tool to efficiently assess large groups of species regarding their susceptibility to climate change and other threats, and to identify research and management priorities. 相似文献
19.
Alex S. Anderson April E. Reside Jeremy J. VanDerWal Luke P. Shoo Richard G. Pearson Stephen E. Williams 《Global Change Biology》2012,18(7):2126-2134
Montane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north‐eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations. 相似文献