首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

2.
An artificial neural network is used to classify environments, including climate, terrain and soil variables, according to their suitability for fifteen structural/environmental forest classes in the Wet Tropics Bioregion of north-east Queensland. We map the environments characteristic of these forest classes in four climate regimes (the present and three past climate scenarios), quantify the changes in area of these environments in response to past regional changes in climate and identify areas that would have been environmentally suitable for rainforests at last glacial maximum (glacial refugia). We also identify areas that would have been suitable for upland and highland rainforest classes during the warmest parts of the interglacial (interglacial refugia) and map locations that consistently remain favourable to specific forest classes despite large changes in climate.In the climate of the last glacial maximum (LGM), rainforest environments are predicted in three relatively distinct refugia in the northern, central and southern Wet Tropics. Only three percent of the total area contains lowland, Mesophyll Vine Forest and the majority of the area of the rainforest refugia supports upland rainforest classes. In the cool, wet climate of the Pleistocene/Holocene transition (PHT), rainforest environments expand to form a more or less continuous block from the northern limits of the region to the Walter Hill Range, except for discontinuous patches extending through the Seaview and Paluma Ranges in the south. During the Holocene climatic optimum (HCO), rainforest environments become more fragmented, especially in the south. Lowland rainforest environments are very extensive in this climate while upland rainforest classes are restricted to what we term “interglacial refugia”.Estimated distributions and stable locations (consistently predicted in all four climate scenarios) for the various rainforest environment classes are our main, novel contribution. Each forest environment responds individualistically to climate change. Our results confirm the highly dynamic nature of the Wet Tropics landscape and present a much more detailed picture of landscape change since the late Pleistocene than previously has been available. This mapping exercise should be useful in the future for analyses of present-day biogeographic patterns. We argue that empirical modelling approaches have an important role in palaeoecology and global change research that is complementary to the developing mechanistic methods.  相似文献   

3.
Abstract We examined broad scale patterns of diversity and distribution of lotic Chironomidae (Diptera) within the Wet Tropics bioregion of northern Queensland, Australia. Field surveys across broad latitudinal and altitudinal gradients within the Wet Tropics revealed a fauna of 87 species‐level taxa in 49 genera comprising three main elements: a small genuinely tropical fraction, and larger cosmopolitan and Gondwanan components. The latter group originated when Australia, as part of the ancient Gondwana supercontinent, was situated over Antarctic latitudes with a cooler, wetter climate than today. In the Wet Tropics, cool Gondwanan taxa occurred predominantly in upland and shaded lowland sites, but no species appeared narrowly temperature restricted, and there was no faunal zonation with altitude. Most chironomid species occurred at all latitudes within the Wet Tropics, with no evidence for an enduring effect of the historical rainforest contractions on current‐day distribution patterns. These findings contrast with those for aquatic faunas elsewhere in the world and for the terrestrial Wet Tropics fauna. We relate this to the generally broad environmental tolerances of Australian chironomids, and comment on why the latitudinal diversity gradient does not apply to the Australian chironomid fauna.  相似文献   

4.
This study investigates patterns of genetic connectivity among 11 co-distributed tropical rainforest tree species from the genus Elaeocarpus across a biogeographic barrier, the Black Mountain Corridor (BMC) in the Australian Wet Tropics (AWT). We analysed a combination of allelic and flanking region sequence data from microsatellite markers, and evaluated the relative influence of environmental preferences and functional traits on genetic diversity and gene flow. The results indicate that only in three species geographic structuring of haplotype distribution reflects a north vs. south of the BMC pattern. Environmental factors linked with altitude were recognized as affecting genetic trends, but the selective processes operating on upland species appear to be associated with competitiveness and regeneration opportunities on poor soil types rather than climate variables alone. In contrast to previous observations within southeastern Australian rainforests, genetic differentiation in the AWT appears to be associated with small-fruited rather than large-fruited species, highlighting how external factors can influence the dispersal dimension. Overall, this study emphasizes the importance of considering functional and environmental factors when attempting generalizations on landscape-level patterns of genetic variation. Understanding how plant functional groups respond to environmental and climatic heterogeneity can help us predict responses to future change.  相似文献   

5.
Climate-driven biodiversity erosion is escalating at an alarming rate. The pressure imposed by climate change is exceptionally high in tropical ecosystems, where species adapted to narrow environmental ranges exhibit strong physiological constraints. Despite the observed detrimental effect of climate change on ecosystems at a global scale, our understanding of the extent to which multiple climatic drivers affect population dynamics is limited. Here, we disentangle the impact of different climatic stressors on 47 rainforest birds inhabiting the mountains of the Australian Wet Tropics using hierarchical population models. We estimate the effect of spatiotemporal changes in temperature, precipitation, heatwaves, droughts and cyclones on the population dynamics of rainforest birds between 2000 and 2016. We find a strong effect of warming and changes in rainfall patterns across the elevational-segregated bird communities, with lowland populations benefiting from increasing temperature and precipitation, while upland species show an inverse strong negative response to the same drivers. Additionally, we find a negative effect of heatwaves on lowland populations, a pattern associated with the observed distribution of these extreme events across elevations. In contrast, cyclones and droughts have a marginal effect on spatiotemporal changes in rainforest bird communities, suggesting a species-specific response unrelated to the elevational gradient. This study demonstrated the importance of unravelling the drivers of climate change impacts on population changes, providing significant insight into the mechanisms accelerating climate-induced biodiversity degradation.  相似文献   

6.
Altitudinal gradients are an excellent study tool to help understand the mechanisms shaping community assembly. We established a series of altitudinal gradients along the east coast of Australia to describe how the distribution of a hyper‐diverse herbivore group (night‐flying Lepidoptera) changes across an environmental gradient in subtropical and tropical rainforests. Two transects were in subtropical rainforest in the same bioregion, one in south‐east Queensland (28.7°S) and one in north east New South Wales (29.7°S). Two were in tropical rainforest, one in mid‐east Queensland (21.1°S) and one in the Wet Tropics of northern Queensland (17.5°S). Replicate plots were established in altitudinal bands separated by 200 m. Canopy and understorey moths were sampled at the beginning and end of the wet season using automatic Pennsylvania light traps. We sorted a total of 93 400 individuals, belonging to 3035 species. The two subtropical transects in the same region showed similar patterns of turnover across altitude, with the most distinctive assemblage occurring at the highest altitude. Moth assemblages in the tropical transects tended to show distinct ‘lowland’ and ‘upland’ communities. For species that were common across several of the transects, many were found at lower altitudes in the subtropics and higher altitudes in the tropics, suggesting they are sensitive to environmental conditions, and track their physiological envelopes across latitudes. These results suggest ubiquitous altitudinal stratification in tropical and subtropical Australian rainforests. The marked response of species to latitude and altitude demonstrates they are sensitive to climatic variables and can be used as indicators to understand future community responses to climate change.  相似文献   

7.
Ecosystem services are the bridge between nature and society, and are essential elements of community well-being. The Wet Tropics Australia, is environmentally and biologically diverse, and supplies numerous ecosystem services. It contributes to the community well-being of this region, Australian national economy and global climate change mitigation efforts. However, the ecosystem services in the region have rarely been assessed undermining strategic landscape planning to sustain their future flow. In this study, we attempted to: (i) assess the quantity of five regulating ecosystem services – global climate regulation, air quality regulation, erosion regulation, nutrient regulation, and cyclone protection, and three provisioning ecosystem services – habitat provision, energy provision and timber provision across rainforests, sclerophyll forests and rehabilitated plantation forests; (ii) evaluate the variation of supply of those regulating and provisioning ecosystem services across environmental gradients, such as rainfall, temperature, and elevation; (iii) show the relationships among those ecosystem services; and (iv) identify the hotspots of single and multiple ecosystem services supply across the landscape. The results showed that rainforests possess a very high capacity to supply single and multiple ecosystem services, and the hotspots for most of the regulating and provisioning ecosystem services are found in upland rainforest followed by lowland rainforest, and upland sclerophyll forest. Elevation, rainfall and temperature gradients along with forest structure are the main determinant factors for the quantity of ecosystem services supplied across the three forest types. The correlation among ecosystem services may be positive or negative depending on the ecosystem service category and vegetation type. The rehabilitated plantation forests may provide some ecosystem services comparable to the rainforest. The results demonstrated disturbance regimes (such as tropical cyclones) may have influenced the usual spatial trend of ecosystem service values. This study will assist decision makers in incorporating ecosystem services into their natural resource management planning, and for practitioners to identify the areas with higher values of specific and multiple ecosystem services.  相似文献   

8.
Aim We created spatially explicit models of palaeovegetation stability for the rain forests of the Australia Wet Tropics. We accounted for the climatic fluctuations of the late Quaternary, improving upon previous palaeovegetation modelling for the region in terms of data, approach and coverage of predictions. Location Australian Wet Tropics. Methods We generated climate‐based distribution models for broad rain forest vegetation types using contemporary and reconstructed ‘pre‐clearing’ vegetation data. Models were projected onto previously published palaeoclimate scenarios dating to c. 18 kyr bp . Vegetation stability was estimated as the average likelihood that a location was suitable for rain forest through all climate scenarios. Uncertainty associated with model projections onto novel environmental conditions was also tracked. Results Upland rain forest was found to be the most stable of the wet forest vegetation types examined. We provide evidence that the lowland rain forests were largely extirpated from the region during the last glacial maximum, with only small, marginally suitable fragments persisting in two areas. Models generated using contemporary vegetation data underestimated the area of environmental space suitable for rain forest in historical time periods. Model uncertainty resulting from projection onto novel environmental conditions was low, but generally increased with the number of years before present being modelled. Main conclusions Climate fluctuations of the late Quaternary probably resulted in dramatic change in the extent of rain forest in the region. Pockets of high‐stability upland rain forest were identified, but extreme bottlenecks of area were predicted for lowland rain forest. These factors are expected to have had a dramatic impact on the historical dynamics of population connectivity and patterns of extinction and recolonization of dependent fauna. Finally, we found that models trained on contemporary vegetation data can be problematic for reconstructing vegetation patterns under novel environmental conditions. Climatic tolerances and the historical extent of vegetation may be underestimated when artificial vegetation boundaries imposed by land clearing are not taken into account.  相似文献   

9.
Through a combination of macroecological, paleoecological, and phylogeographical analyses, the rainforests of the Australian Wet Tropics (AWT) have emerged as a useful model for understanding sensitivity of species to past climatic change and, hence, for predicting vulnerability to future change. To extend the ecological breadth of comparative phylogeographic analyses, we investigate a clade of myobatrachid frogs, Mixophyes, a genus of large, stream-breeding but terrestrial frogs, three species of which are endemic to rainforests of the AWT. Here we (i) combine mtDNA, allozyme, and morphological data to refine knowledge of the geographic and environmental distribution of each taxon, (ii) resolve relationships among species, and (iii) use mtDNA phylogeography to infer responses of the three taxa to late-Pleistocene and Holocene climatic change. Each of the three species (Mixophyes carbinensis, Mixophyes coggeri, and Mixophyes schevilli) is effectively diagnosed by mtDNA, with the two small-bodied, allopatric species (M. carbinensis and M. schevilli) being sister-taxa. Mixophyes have a very different history from other AWT amphibians, with more recent speciation (net divergences <5%) and much lower and geographically unstructured mtDNA diversity within each species. The combination of low diversity (θ(Π)<0.36%) and strong signals of recent population expansion (Fu's Fs<0) suggests very high sensitivity to climate-driven rainforest dynamics, perhaps due to their large body size, low population density, and their requirement for both wet forest-floor litter and streams suitable for breeding. The results further emphasize the heterogeneity of species' responses to climate change and suggest that species dependent on multiple habitat types could be especially vulnerable.  相似文献   

10.
The Australian Wet Tropics region extends for almost 900 000 ha along the coastline of north‐east Queensland. The rainforests in this region have a rich and unique biodiversity and are World Heritage listed by UNESCO. Disturbance from tropical cyclones is a significant driver of the rainforest dynamics in this area, and when frequent or intense can facilitate the recruitment and expansion of exotic invasive species. Exotic vines are of particular concern for forest conservation as they can be highly competitive with native vegetation and may prevent forest regeneration. This literature review found evidence that fragmented forests, which are very common in the Australian Wet Tropics, are vulnerable to post‐cyclone vine invasion. In particular, although the diversity and abundance of herbaceous vines tend to decline as the canopy closes 2 years post‐cyclone disturbance, woody exotic vines and scramblers may persist for much longer or even increase in numbers. Since forest recovery in these systems is influenced by the severity and recurrence of disturbance, an increase in cyclone intensity under climate change may cause rapid changes in rainforest structure, composition and diversity, and increase exotic vine invasion. Post‐cyclone management of vines appears to require direct intervention, with manual cutting being currently the most effective method. However, there are a number of difficulties to its wide implementation in Australia, and further study on options for control is needed. Abstract in Spanish is available with online material.  相似文献   

11.
Global climate change is a threat to ecosystems that are rich in biodiversity and endemism, such as the World Heritage‐listed subtropical rainforests of central eastern Australia. Possible effects of climate change on the biota of tropical rainforests have been studied, but subtropical rainforests have received less attention. We analysed published data for an assemblage of 38 subtropical rainforest vertebrate species in four taxonomic groups to evaluate their relative vulnerability to climate change. Focusing on endemic and/or threatened species, we considered two aspects of vulnerability: (i) resistance, defined by indicators of rarity (geographical range, habitat specificity and local abundance); and (ii) resilience, defined by indicators of a species potential to recover (reproductive output, dispersal potential and climatic niche). Our analysis indicated that frogs are most vulnerable to climate change, followed by reptiles, birds, then mammals. Many species in our assemblage are regionally endemic montane rainforest specialists with high vulnerability. Monitoring of taxa in regenerating rainforest showed that many species with high resilience traits also persisted in disturbed habitat, suggesting that they have capacity to recolonize habitats after disturbance, that is climate change‐induced events. These results will allow us to prioritize adaptation strategies for species most at risk. We conclude that to safeguard the most vulnerable amphibian, reptile and bird species against climate change, climatically stable habitats (cool refugia) that are currently without protection status need to be identified, restored and incorporated in the current reserve system. Our study provides evidence that montane subtropical rainforest deserves highest protection status as habitat for vulnerable taxa.  相似文献   

12.
Tropical and subtropical species represent the majority of biodiversity. These species are predicted to lack the capacity to evolve higher thermal limits in response to selection imposed by climatic change. However, these assessments have relied on indirect estimates of adaptive capacity, using conditions that do not reflect environmental changes projected under climate change. Using a paternal half‐sib full‐sib breeding design, we estimated the additive genetic variance and narrow‐sense heritability for adult upper thermal limits in two rainforest‐restricted species of Drosophila reared under two thermal regimes, reflecting increases in seasonal temperature projected for the Wet Tropics of Australia and under standard laboratory conditions (constant 25°C). Estimates of additive genetic variation and narrow‐sense heritability for adult heat tolerance were significantly different from zero in both species under projected summer, but not winter or constant, thermal regimes. In contrast, significant broad‐sense genetic variation was apparent in all thermal regimes for egg‐to‐adult viability. Environment‐dependent changes in the expression of genetic variation for adult upper thermal limits suggest that predicting adaptive responses to climate change will be difficult. Estimating adaptive capacity under conditions that do not reflect future environmental conditions may provide limited insight into evolutionary responses to climate change.  相似文献   

13.
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.  相似文献   

14.
The Wet Tropics bioregion of north‐eastern Australia has been subject to extensive fluctuations in climate throughout the late Pliocene and Pleistocene. Cycles of rainforest contraction and expansion of dry sclerophyll forest associated with such climatic fluctuations are postulated to have played a major role in driving geographical endemism in terrestrial rainforest taxa. Consequences for the distributions of aquatic organisms, however, are poorly understood. The Australian non‐biting midge species Echinocladius martini Cranston (Diptera: Chironomidae), although restricted to cool, well‐forested freshwater streams, has been considered to be able to disperse among populations located in isolated rainforest pockets during periods of sclerophyllous forest expansion, potentially limiting the effect of climatic fluctuations on patterns of endemism. In this study, mitochondrial COI and 16S data were analysed for E. martini collected from eight sites spanning the Wet Tropics bioregion to assess the scale and extent of phylogeographic structure. Analyses of genetic structure showed several highly divergent cryptic lineages with restricted geographical distributions. Within one of the identified lineages, strong genetic structure implied that dispersal among proximate (<1 km apart) streams was extremely restricted. The results suggest that vicariant processes, most likely due to the systemic drying of the Australian continent during the Plio‐Pleistocene, might have fragmented historical E. martini populations and, hence, promoted divergence in allopatry.  相似文献   

15.
Glow-worms are bioluminescent fly larvae (Order Diptera, genus Arachnocampa) found only in Australia and New Zealand. Their core habitat is rainforest gullies and wet caves. Eight species are present in Australia; five of them have been recently described. The geographic distribution of species in Australia encompasses the montane regions of the eastern Australian coastline from the Wet Tropics region of northern Queensland to the cool temperate and montane rainforests of southern Australia and Tasmania. Phylogenetic trees based upon partial sequences of the mitochondrial genes cytochrome oxidase II and 16S mtDNA show that populations tend to be clustered into allopatric geographic groups showing overall concordance with the known species distributions. The deepest division is between the cool-adapted southern subgenus, Lucifera, and the more widespread subgenus, Campara. Lucifera comprises the sister groups, A. tasmaniensis, from Tasmania and the newly described species, A. buffaloensis, found in a high-altitude cave at Mt Buffalo in the Australian Alps in Victoria. The remaining Australian glow-worms in subgenus Campara are distributed in a swathe of geographic clusters that extend from the Wet Tropics in northern Queensland to the temperate forests of southern Victoria. Samples from caves and rainforests within any one geographic location tended to cluster together within a clade. We suggest that the morphological differences between hypogean (cave) and epigean (surface) glow-worm larvae are facultative adaptations to local microclimatic conditions rather than due to the presence of cryptic species in caves.  相似文献   

16.
The ability of species to shift their distributions in response to climate change may be impeded by lack of suitable climate or habitat between species’ current and future ranges. We examined the potential for climate and forest cover to limit the movement of bird species among sites of biodiversity importance in the Albertine Rift, East Africa, a biodiversity hotspot. We forecasted future distributions of suitable climate for 12 Albertine Rift endemic bird species using species distribution models based on current climate data and projections of future climate. We used these forecasts alongside contemporary forest cover and natal dispersal estimates to project potential movement of species over time. We identified potentially important pathways for the bird species to move among 30 important bird and biodiversity areas (IBAs) that are both currently forested and projected to provide suitable climate over intervening time periods. We examined the relative constraints imposed by availability of suitable climate and forest cover on future movements. The analyses highlighted important pathways of potential dispersal lying along a north‐south axis through high elevation areas of the Albertine Rift. Both forest availability and climate suitability were projected to influence bird movement through these landscapes as they are affected by future climate change. Importantly, forest cover and areas projected to contain suitable climate in future were often dissociated in space, which could limit species’ responses to climate change. A lack of climatically suitable areas was a far greater impediment to projected movement among IBAs than insufficient forest cover. Although current forest cover appears sufficient to facilitate movement of bird species in this region, protecting the remaining forests in areas also projected to be climatically suitable for species to move through in the future should be a priority for adaptation management.  相似文献   

17.
Aim Assessing the relative vulnerability of species within an assemblage to extinction is crucial for conservation planning at the regional scale. Here, we quantify relative vulnerability to extinction, in terms of both resistance and resilience to environmental change, in an assemblage of tropical rainforest vertebrates. Location Wet Tropics Bioregion, north Queensland, Australia. Methods We collated data on 163 vertebrates that occur in the Australian Wet Tropics, including 24 frogs, 33 reptiles, 19 mammals and 87 birds. We used the ‘seven forms of rarity’ model to assess relative vulnerability or resistance to environmental change. We then develop a new analogous eight‐celled model to assess relative resilience, or potential to recover from environmental perturbation, based on reproductive output, potential for dispersal and climatic niche marginality. Results In the rarity model, our assemblage had more species very vulnerable and very resistant than expected by chance. There was a more even distribution of species over the categories in the resilience model. The three traits included in each model were not independent of each other; species that were widespread were also habitat generalists, while species with narrow geographical ranges tended to be locally abundant. In the resilience model, species with low reproductive output had a narrow climatic niche and also a low capacity to disperse. Frogs were the most vulnerable taxonomic group overall. The model categories were compared to current IUCN category of listed species, and the product of the two models was best correlated with IUCN listings. Main conclusions The models presented here offer an objective way to predict the resistance of a species to environmental change, and its capacity to recover from disturbance. The new resilience model has similar advantages to the rarity model, in that it uses simple information and is therefore useful for examining patterns in assemblages with many poorly known species.  相似文献   

18.
Mounting evidence shows that organisms have already begun to respond to global climate change. Advances in our knowledge of how climate shapes species distributional patterns has helped us better understand the response of birds to climate change. However, the distribution of birds across the landscape is also driven by biotic and abiotic components, including habitat characteristics. We therefore developed statistical models of 147 bird species distributions in the eastern United States, using climate, elevation, and the distributions of 39 tree species to predict contemporary bird distributions. We used randomForest, a robust regression‐based decision tree ensemble method to predict contemporary bird distributions. These models were then projected onto three models of climate change under high and low emission scenarios for both climate and the projected change in suitable habitat for the 39 tree species. The resulting bird species models indicated that breeding habitat will decrease by at least 10% for 61–79 species (depending on model and emissions scenario) and increase by at least 10% for 38–52 species in the eastern United States. Alternatively, running the species models using only climate/elevation (omitting tree species), we found that the predictive power of these models was significantly reduced (p<0.001). When these climate/elevation‐only models were projected onto the climate change scenarios, the change in suitable habitat was more extreme in 60% of the species. In the end, the strong associations with vegetation tempers a climate/elevation‐only response to climate change and indicates that refugia of suitable habitat may persist for these bird species in the eastern US, even after the redistribution of tree species. These results suggest the importance of interacting biotic processes and that further fine‐scale research exploring how climate change may disrupt species specific requirements is needed.  相似文献   

19.
In Australia, dingoes (Canis lupus dingo) have been implicated in the decline and extinction of a number of vertebrate species. The lowland Wet Tropics of Queensland, Australia is a biologically rich area with many species of rainforest‐restricted vertebrates that could be threatened by dingoes; however, the ecological impacts of dingoes in this region are poorly understood. We determined the potential threat posed by dingoes to native vertebrates in the lowland Wet Tropics using dingo scat/stomach content and stable isotope analyses of hair from dingoes and potential prey species. Common mammals dominated dingo diets. We found no evidence of predation on threatened taxa or rainforest specialists within our study areas. The most significant prey species were northern brown bandicoots (Isoodon macrourus), canefield rats (Rattus sordidus), and agile wallabies (Macropus agilis). All are common species associated with relatively open grass/woodland habitats. Stable isotope analysis suggested that prey species sourced their nutrients primarily from open habitats and that prey choice, as identified by scat/stomach analysis alone, was a poor indicator of primary foraging habitats. In general, we find that prey use by dingoes in the lowland Wet Tropics does not pose a major threat to native and/or threatened fauna, including rainforest specialists. In fact, our results suggest that dingo predation on “pest” species may represent an important ecological service that outweighs potential biodiversity threats. A more targeted approach to managing wild canids is needed if the ecosystem services they provide in these contested landscapes are to be maintained, while simultaneously avoiding negative conservation or economic impacts.  相似文献   

20.
The threat of anthropogenic climate change has seen a renewed focus on understanding contemporary patterns of species distribution. This is especially the case for the biota of tropical mountains, because tropical species often have particularly narrow elevational ranges and there are high levels of short-range endemism. Here we describe geographic patterns of ant diversity and distribution in the World Heritage-listed rainforests of the Australian Wet Tropics (AWT), revealing seasonal moisture stability to be an important environmental correlate of elevational patterns of species composition. We sampled ants in leaf litter, on the litter surface and on tree trunks at 26 sites from six subregions spanning five degrees of latitude and elevation ranges from 100–1,300 m. A total of 296 species from 63 genera were recorded. Species richness showed a slight peak at mid elevations, and did not vary significantly with latitude. Species composition varied substantially between subregions, and many species have highly localised distributions. There was very marked species turnover with elevation, with a particularly striking compositional disjunction between 600 m and 800 m at each subregion. This disjunction coincides with a strong environmental threshold of seasonal stability in moisture associated with cloud ‘stripping’. Our study therefore provides further support for climatic stability as a potential mechanism underlying patterns of diversity. The average height of orographic cloud layers is predicted to rise under global warming, and associated shifts in seasonal moisture stability may exacerbate biotic change caused by rising temperature alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号