共查询到3条相似文献,搜索用时 15 毫秒
1.
Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model's performance and that the spatial variations of species presence-absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution. 相似文献
2.
Aim The study and prediction of species–environment relationships is currently mainly based on species distribution models. These purely correlative models neglect spatial population dynamics and assume that species distributions are in equilibrium with their environment. This causes biased estimates of species niches and handicaps forecasts of range dynamics under environmental change. Here we aim to develop an approach that statistically estimates process‐based models of range dynamics from data on species distributions and permits a more comprehensive quantification of forecast uncertainties. Innovation We present an approach for the statistical estimation of process‐based dynamic range models (DRMs) that integrate Hutchinson's niche concept with spatial population dynamics. In a hierarchical Bayesian framework the environmental response of demographic rates, local population dynamics and dispersal are estimated conditional upon each other while accounting for various sources of uncertainty. The method thus: (1) jointly infers species niches and spatiotemporal population dynamics from occurrence and abundance data, and (2) provides fully probabilistic forecasts of future range dynamics under environmental change. In a simulation study, we investigate the performance of DRMs for a variety of scenarios that differ in both ecological dynamics and the data used for model estimation. Main conclusions Our results demonstrate the importance of considering dynamic aspects in the collection and analysis of biodiversity data. In combination with informative data, the presented framework has the potential to markedly improve the quantification of ecological niches, the process‐based understanding of range dynamics and the forecasting of species responses to environmental change. It thereby strengthens links between biogeography, population biology and theoretical and applied ecology. 相似文献