首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most destructive insect pests on soybeans in the United States. One method for managing this pest is through host plant resistance. Since its arrival in 2000, 4 aphid biotypes have been identified that are able to overcome soybean aphid resistance (Rag) genes. A soybean aphid isolate collected from Moline, Illinois readily colonized soybean plants with the soybean aphid resistance gene Rag2, unlike biotypes 1 and 2, but similar to soybean aphid biotype 3. Two no‐choice experiments compared the virulence of the Moline isolate with biotype 3. In both experiments, differences in aphid population counts were not significant (P > 0.05) on soybean genotypes LD08–12957a (Rag2) and LD11–5413a (Rag2), but the aphid counts for the Moline isolate were significantly (P < 0.05) lower than the aphid counts for the biotype 3 isolate on the soybean genotypes Dowling (Rag1), LD05–16611 (Rag1), LD11–4576a (Rag1), and PI 567598B (rag1b and rag3). The Moline isolate was a variant of aphid biotype 3, which is the first report showing that soybean aphid isolates classified as the same biotype, based on virulence against specific Rag genes, can differ in aggressiveness or ability to colonize specific host genotypes.  相似文献   

2.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a pest of soybean, Glycine max (L.) Merr. (Fabaceae), from eastern Asia that was first reported in North America in 2000. The influence of temperature on plasticity of life history and morphological traits of the soybean aphid has not been tested despite observable differences in population growth and morphology among isolates in laboratory colonies. Therefore, we used three isolates of the aphid to test whether lifespan, growth rate, fecundity, and morphology were plastic at 16, 24, and 28 °C. Population size of the aphid was influenced by temperature, probably because two reproductive traits, maximum number of offspring in 1 day and total fecundity, were plastic and increased in successive generations at 24 °C. All morphological traits were plastic, including lengths of body parts, number of antennal segments and caudal hairs, and color of siphunculi and body, and they were differentially influenced by isolate and temperature. Knowledge about the life history and morphology of the soybean aphid may help identify its capacity for phenotypic plasticity in heterogeneous temperatures and identify how temperature influences its survival, population growth, and diversity.  相似文献   

3.
Molecular mapping of soybean aphid resistance genes in PI 567541B   总被引:2,自引:0,他引:2  
The soybean aphid (Aphis glycines Matsumura) is an important pest of soybean [Glycine max (L.) Merr.] in North America since it was first reported in 2000. PI 567541B is a newly discovered aphid resistance germplasm with early maturity characteristics. The objectives of this study were to map and validate the aphid resistance genes in PI 567541B using molecular markers. A mapping population of 228 F3 derived lines was investigated for the aphid resistance in both field and greenhouse trials. Two quantitative trait loci (QTLs) controlling the aphid resistance were found using the composite interval mapping method. These two QTLs were localized on linkage groups (LGs) F and M. PI 567541B conferred resistant alleles at both loci. An additive × additive interaction between these two QTLs was identified using the multiple interval mapping method. These two QTLs combined with their interaction explained most of the phenotypic variation in both field and greenhouse trials. In general, the QTL on LG F had less effect than the one on LG M, especially in the greenhouse trial. These two QTLs were further validated using an independent population. The effects of these two QTLs were also confirmed using 50 advanced breeding lines, which were all derived from PI 567541B and had various genetic backgrounds. Hence, these two QTLs identified and validated in this study could be useful in improving soybean aphid resistance by marker-assisted selection.  相似文献   

4.
We examined the physiological responses of four soybean genotypes (KS4202, K-1639-2, ‘Jackson,’ ‘Asgrow 2703’) to soybean aphid (Aphis glycines Matsumura) feeding in reproductive stage soybeans (R1, beginning bloom). Photosynthetic capacity was evaluated by taking survey measurements at 7, 17, 24, and 28 days after aphid introduction and by measuring assimilation/internal CO2 (ACi) curves at 29 days after aphid introduction. There were no significant differences in survey measurements between the control and infested KS4202, K-1639-2, Jackson, and Asgrow 2703 plants at 7, 17, 24, and 28 days after aphid introduction. At 29 days after aphid introduction, Asgrow 2703 plants showed a significant reduction in photosynthetic capacity compared to its control plants, while infested KS4202 plants had photosynthetic rates similar to control plants, suggesting the plant’s ability to compensate for aphid feeding. Differences in gas-exchange parameters, specifically Jmax and CE, between control and infested Asgrow 2703 plants showed that soybean aphid feeding negatively impacts the carbon-linked/dark reactions, specifically rubisco activity and RuBP regeneration. This research also investigated the role of peroxidases in the defense response of soybeans to the soybean aphid. Enzyme kinetics studies documented the up-regulation of peroxidase activity for both Asgrow 2703 and KS4202 aphid-infested plants compared to their respective uninfested control plants at 24 and 28 days after aphid introduction. Peroxidase expression profiles identified differences in the isozyme profiles of aphid-infested and control plants for Asgrow 2703 and KS4202. Differences between physiological responses of infested KS4202 and Asgrow 2703, particularly temporal changes in photosynthesis activity, imply that KS4202 tolerates some impacts of soybean aphid feeding on photosynthetic integrity.  相似文献   

5.
A novel locus for soybean aphid resistance   总被引:2,自引:0,他引:2  
The soybean aphid (Aphis glycines Matsumura) is an important pest on soybean [Glycine max (L.) Merr.] in North America. Aphid resistance has recently been found on plant introduction (PI) 567543C, but little is known about its genetic control. The objectives of this study were to identify the resistance genes in PI 567543C with molecular markers and validate them in a different genetic background. A mapping population of 249 F4 derived lines from a cross between PI 567543C and a susceptible parent was investigated for aphid resistance in both the greenhouse and the field. The broad sense heritability of aphid resistance in the field trial was over 0.95. The segregation of aphid resistance in this population suggests a major gene controlling the resistance. Bulked segregant analysis with molecular markers revealed a potential genomic region. After saturating this putative region with more markers, a genetic locus was mapped in an interval between Sat_339 and Satt414 on chromosome 16 (linkage group J) using the composite interval mapping method. This locus explained the majority of the phenotypic variation ranging from 84.7% in the field trial to 90.4% in the greenhouse trial. Therefore, the aphid resistance in PI 567543C could be mainly controlled by this gene. This aphid resistance gene was mapped on a different chromosome than the other resistance genes reported previously from other resistant germplasms. This gene appears to be additive based on the aphid resistance of the heterozygous lines at this locus. Thus, a new symbol Rag3 is used to designate this gene. Moreover, Rag3 was confirmed in a validation population. This new aphid-resistance gene could be valuable in breeding aphid resistant cultivars.  相似文献   

6.
The soybean aphid (Aphis glycines Matsumura) is the most damaging insect pest of soybean [Glycine max (L.) Merr.] in North America. New soybean aphid biotypes have been evolving quickly and at least three confirmed biotypes have been reported in USA. These biotypes are capable of defeating most known aphid resistant soybean genes indicating the need for identification of new genes. Plant Introduction (PI) 567301B was earlier identified to have antixenosis resistance against biotype 1 and 2 of the soybean aphid. Two hundred and three F7:9 recombinant inbred lines (RILs) developed from a cross of soybean aphid susceptible cultivar Wyandot and resistant PI 567301B were used for mapping aphid resistance genes using the quantitative trait loci (QTL) mapping approach. A subset of 94 RILs and 516 polymorphic SNP makers were used to construct a genome-wide molecular linkage map. Two candidate QTL regions for aphid resistance were identified on this linkage map. Fine mapping of the QTL regions was conducted with SSR markers using all 203 RILs. A major gene on chromosome 13 was mapped near the previously identified Rag2 gene. However, an earlier study revealed that the detached leaves of PI 567301B had no resistance against the soybean aphids while the detached leaves of PI 243540 (source of Rag2) maintained aphid resistance. These results and the earlier finding that PI 243540 showed antibiosis resistance and PI 567301B showed antixenosis type resistance, indicating that the aphid resistances in the two PIs are not controlled by the same gene. Thus, we have mapped a new gene near the Rag2 locus for soybean aphid resistance that should be useful in breeding for new aphid-resistant soybean cultivars. Molecular markers closely linked to this gene are available for marker-assisted breeding. Also, the minor locus found on chromosome 8 represents the first reported soybean aphid-resistant locus on this chromosome.  相似文献   

7.
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), poses a new threat to soybean, Glycine max (L.) Merrill (Fabaceae), production in the north central USA. As H. halys continues to spread and increase in abundance in the region, the interaction between H. halys and management tactics deployed for other pests must be determined. Currently, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most abundant and damaging insect pest of soybean in the region. Aphid‐resistant soybean, mainly with the Rag1 gene, is commercially available for management of A. glycines. Here, experiments were performed to evaluate the effects of Rag1 aphid‐resistant soybean on the mortality, development, and preference of H. halys. In a no‐choice test, mortality of H. halys reared on Rag1 aphid‐resistant soybean pods was significantly lower than when reared on aphid‐susceptible soybean pods (28 vs. 53%). Development time, adult weight, and proportion females of surviving adults did not differ when reared on Rag1 aphid‐resistant or aphid‐susceptible soybean pods. In choice tests, H. halys exhibited a preference for Rag1 aphid‐resistant over aphid‐susceptible soybean pods after 4 h, but not after 24 h. Halyomorpha halys exhibited no preference when tested with vegetative‐stage or reproductive‐stage soybean plants. The preference by H. halys for Rag1 aphid‐resistant soybean pods and the decreased mortality when reared on these pods suggests that the use of Rag1 aphid‐resistant soybean may favor this emerging pest in the north central USA.  相似文献   

8.
The objectives were to (a) quantify the effects of high daytime temperature (HDT) from gametogenesis to full bloom on photosynthesis and pod set in soybean (Glycine max L. Merril) genotypes and (b) assess the relationships among photosynthesis, cardinal temperatures for pollen germination, in vitro pollen germination percentage, canopy reflectance, and pod‐set percentage. Three field experiments were conducted, and Experiment I had HDT between gametogenesis and full bloom (36.5°C to 38.6°C) compared with Experiments II and III (29.5°C to 31.6°C; optimum temperature). HDT decreased photosynthesis (22%) and pod‐set percent (11%) compared with Experiment III. Cultivars had higher photosynthesis and pod‐set percent than plant introduction (PI) lines. The cultivars (i.e., IA3023 and KS4694) and PI lines (i.e., PI393540 and PI588026A) were HDT tolerant and susceptible, respectively. The decreased pod‐set percentage in susceptible genotypes (PI lines) was associated with pollen characteristics. Significant positive (r2 ≥ 0.67) association between photosynthesis, cardinal temperatures for pollen germination (Topt and Tmax) with pod‐set percentage was observed. However, a negative (r2 ≥ ?0.43) association between photosynthesis and pod set with canopy reflectance at visible spectrum was observed. In vitro pollen germination and canopy reflectance at visible spectrum can be used as a high‐throughput phenotypic tool for breeding HDT‐tolerant genotypes.  相似文献   

9.
Host-plant resistance is an effective method for controlling soybean aphid (Aphis glycines Matsumura), the most damaging insect pest of soybean (Glycine max (L.) Merr.) in North America. Recently, resistant soybean lines have been discovered and at least four aphid resistance genes (Rag1, Rag2, Rag3 and rag4) have been mapped on different soybean chromosomes. However, the evolution of new soybean aphid biotypes capable of defeating host-plant resistance conferred by most single genes demonstrates the need for finding germplasm with multigenic resistance to the aphid. This study was conducted to map quantitative trait loci (QTL) for aphid resistance in PI 567324. We identified two major QTL (QTL_13_1 and QTL_13_2) for aphid resistance on soybean chromosome 13 using 184 recombinant inbred lines from a ‘Wyandot'' × PI 567324 cross. QTL_13_1 was located close to the previously reported Rag2 gene locus, and QTL_13_2 was close to the rag4 locus. A minor QTL (QTL_6_1) was also detected on chromosome 6, where no gene for soybean aphid resistance has been reported so far. These results indicate that PI 567324 possesses oligogenic resistance to the soybean aphid. The molecular markers closely linked to the QTL reported here will be useful for development of cultivars with oligogenic resistance that are expected to provide broader and more durable resistance against soybean aphids compared with cultivars with monogenic resistance.  相似文献   

10.
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is one of the most destructive pests in the cultivation of soybean (Glycine max (L.) Merr.) worldwide. Markers based on the SCN resistance gene will enable efficient marker-assisted selection (MAS). We sequenced the candidate gene rhg1 in six resistant and two susceptible soybean genotypes and identified 37 SNPs (single nucleotide polymorphisms) among the sequences, of which 11 were in the coding region. Seven of these 11 SNPs led to changes in the amino acid sequence of the gene. The amino acid sequence we obtained differs from the previously published one by a stretch of 26–27 amino acids. Six codominant allele-specific SNP markers based on agarose gel detection were developed and tested in 70 genotypes, among which occurred only nine different haplotypes. Two neutrality tests (Tajima’s D and Fu and Li’s F) were significant for the six SNP loci in the 70 genotypes, which is consistent with intensive directional selection. A strong LD pattern was detected among five SNPs except 2868T > C. Two SNPs (689C > A and 757C > T) formed one haplotype (689C-757C) that was perfectly associated with SCN resistance. The new allele-specific PCR markers located in the alleged sequence of the rhg1 candidate gene, combined with the microsatellite marker BACR-Satt309, will significantly improve the efficiency of MAS during the development of SCN-resistant cultivars.  相似文献   

11.
The discovery of biotype diversity of soybean aphid (SA: Aphis glycines Matsumura) in North America emphasizes the necessity to identify new aphid-resistance genes. The soybean [Glycine max (L.) Merr.] plant introduction (PI) 200538 is a promising source of SA resistance because it shows a high level of resistance to a SA biotype that can overcome the SA-resistance gene Rag1 from ‘Dowling’. The SA-resistance gene Rag2 was previously mapped from PI 200538 to a 10-cM marker interval on soybean chromosome 13 [formerly linkage group (LG) F]. The objective of this study was to fine map Rag2. This fine mapping was carried out using lines derived from 5,783 F2 plants at different levels of backcrossing that were screened with flanking genetic markers for the presence of recombination in the Rag2 interval. Fifteen single nucleotide polymorphism (SNP) markers and two dominant polymerase chain reaction-based markers near Rag2 were developed by re-sequencing target intervals and sequence-tagged sites. These efforts resulted in the mapping of Rag2 to a 54-kb interval on the Williams 82 8× assembly (Glyma1). This Williams 82 interval contains seven predicted genes, which includes one nucleotide-binding site-leucine-rich repeat gene. SNP marker and candidate gene information identified in this study will be an important resource in marker-assisted selection for aphid resistance and for cloning the gene.  相似文献   

12.
Soybean, Glycine max (L.) Merrill (Fabaceae), is an introduced crop to America and initially benefited from a small number of pests threatening its production. Since its rapid expansion in production beginning in the 1930s, several pests have been introduced from the native range of soybean. Our knowledge of how these pests interact and the implications for management is limited. We examined how three common economic soybean pests, the nematode Heterodera glycines Ichinohe (Nematoda: Heteroderidae), the fungus Cadophora gregata Harrington & McNew (Incertae sedis), and the aphid Aphis glycines Matsumura (Hemiptera: Aphididae), interact on soybean cyst nematode‐susceptible (SCN‐S) and soybean cyst nematode‐resistant cultivars carrying the PI 88788 resistance source (SCN‐R). From 2008 to 2010, six soybean cultivars were infested with either a single pest or all three pests in combination in a micro‐plot field experiment. Pest performance was measured in a ‘single pest’ treatment and compared with pest performance in the ‘multiple pest’ treatment, allowing us to measure the impact of SCN resistance and the presence of other soybean pests on each pest’s performance. Performance of H. glycines (80% reduction in reproduction) and A. glycines (19.8% reduction in plant exposure) was reduced on SCN‐R cultivars. Regardless of cultivar, the presence of multiple pests significantly decreased the performance of A. glycines, but significantly increased H. glycines performance. The presence of multiple pests decreased the performance of C. gregata on SCN‐S soybean cultivars (20.6% reduction in disease rating).  相似文献   

13.
Abstract Plants grown under elevated carbon dioxide (CO2) experience physiological changes that influence their suitability as food for insects. To determine the effects of living on soybean (Glycine max Linnaeus) grown under elevated CO2, population growth of the soybean aphid (Aphis glycines Matsumura) was determined at the SoyFACE research site at the University of Illinois, Urbana‐Champaign, Illinois, USA, grown under elevated (550 μL/L) and ambient (370 μL/L) levels of CO2. Growth of aphid populations under elevated CO2 was significantly greater after 1 week, with populations attaining twice the size of those on plants grown under ambient levels of CO2. Soybean leaves grown under elevated levels of CO2 were previously demonstrated at SoyFACE to have increased leaf temperature caused by reduced stomatal conductance. To separate the increased leaf temperature from other effects of elevated CO2, air temperature was lowered while the CO2 level was increased, which lowered overall leaf temperatures to those measured for leaves grown under ambient levels of CO2. Aphid population growth on plants grown under elevated CO2 and reduced air temperature was not significantly greater than on plants grown under ambient levels of CO2. By increasing Glycine max leaf temperature, elevated CO2 may increase populations of Aphis glycines and their impact on crop productivity.  相似文献   

14.
Aphis glycines Matsumura is an important pest of soybean in Asia and North America. Hymenoptera parasitoids play a key role in the control of the soybean aphid. The correct identification of parasitoids is a critical step that precedes the assessment of their potential biological control agents. Accurate identification of the majority of the species attacking the soybean aphid often requires elaborate specimen preparation and expert taxonomic knowledge. In this study, we facilitated the identification of soybean aphid parasitoids by applying a DNA barcoding approach following a preliminary morphological identification. We generated DNA sequence data from the mitochondrial COI gene and the D2 region of 28S rDNA to assess the genetic variation within and between parasitoid species emerging from the soybean aphid in China. Fifteen Hymenoptera parasitoid species belonging to 10 genera of five families were identified with little intra‐specific variation (0.09% ± 0.06% for 28S and 0.36% ± 0.18% for COI) and large inter‐specific divergence (30.46% ± 3.42% for 28S and 20.4% ± 1.20% for COI).  相似文献   

15.
Many aphid species possess wingless (apterous) and winged (alate) stages, both of which can harbor parasitoids at various developmental stages. Alates can either be parasitized directly or can bear parasitoids eggs or larvae resulting from prior parasitism of alatoid nymphs. Winged aphids bearing parasitoid eggs or young larvae eventually still engage in long-distance flights, thereby facilitating parasitoid dispersal. This may have a number of important implications for biological control of aphids by parasitoids. In this study, we determined the effect of parasitism by Aphelinus varipes (Hymenoptera: Aphelinidae) on wing development and flight of the soybean aphid, Aphis glycines (Hemiptera: Aphididae). We also quantified the influence of aphid flight distance on subsequent A. varipes development. Parasitism by A. varipes was allowed at different A. glycines developmental stages (i.e., alatoid 3rd and 4th-instar nymphs, alates) and subsequent aphid flight was measured using a computer-monitored flight mill. Only 35% of aphids parasitized as L3 alatoid nymphs produced normal winged adults compared to 100% of L4 alatoids. Flight performance of aphids parasitized as 4th-instar alatoid nymphs 24 or 48 h prior to testing was similar to that of un-parasitized alates of identical age, but declined sharply for alates that had been parasitized as 4th-instar alatoid nymphs 72 and 96 h prior to testing. Flight performance of aphids parasitized as alate adults for 24 h was not significantly different from un-parasitized alates of comparable ages. Flight distance did not affect parasitoid larval or pupal development times, or the percent mummification of parasitized aphids. Our results have implications for natural biological control of A. glycines in Asia and classical biological control of the soybean aphid in North America.  相似文献   

16.
  • 1 The present study evaluated the population dynamics of the heteroecious soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) during an 8‐year period in Indiana, shortly after its detection in North America. Sampling conducted at multiple locations revealed that A. glycines exhibited a 2‐year oscillation cycle that repeated itself four times between 2001 and 2008: years of low aphid abundance were consistently followed by years of high aphid abundance.
  • 2 Similar patterns of abundance of A. glycines and coccinellids (Coleoptera: Coccinellidae) in soybean fields, both within and between‐years, suggest that late season predation by coccinellids plays a role in the oscillatory cycle of aphids. Insidious flower bugs Orius insidiosus (Say) (Hemiptera: Anthocoridae) were numerically more abundant than coccinellids, although the lack of synchrony between aphids and predatory bugs suggests that O. insidiosus has a limited influence on between‐year variations in aphid density.
  • 3 The inverse relationship between aphid densities before and after the start of the autumn migratory period changes direction in alternate years. High aphid density on soybean in the summer is associated with a reduced number of alate migrants produced in the autumn. Conversely, years with low density aphids on soybean in the summer are characterized by high numbers of alates that migrate to the primary host in the autumn.
  • 4 From a pest management perspective, the 2‐year oscillation cycle of A. glycines is a desirable attribute with respect to population dynamics because it implies that aphids cause significant economic damage only in alternate years (as opposed to every year). Cultural practices enhancing the conservation biological control of Coccinellidae may help to preserve the periodicity of aphid infestation and restrict the pest status of A. glycines.
  相似文献   

17.
18.
Bacterial endosymbionts can drive evolutionary novelty by conferring adaptive benefits under adverse environmental conditions. Among aphid species there is growing evidence that symbionts influence tolerance to various forms of stress. However, the extent to which stress inflicted on the aphid host has cascading effects on symbiont community dynamics remains poorly understood. Here we simultaneously quantified the effect of host‐plant induced and xenobiotic stress on soybean aphid (Aphis glycines) fitness and relative abundance of its three bacterial symbionts. Exposure to soybean defensive stress (Rag1 gene) and a neurotoxic insecticide (thiamethoxam) substantially reduced aphid composite fitness (survival × reproduction) by 74 ± 10% and 92 ± 2%, respectively, which in turn induced distinctive changes in the endosymbiont microbiota. When challenged by host‐plant defenses a 1.4‐fold reduction in abundance of the obligate symbiont Buchnera was observed across four aphid clonal lines. Among facultative symbionts of Rag1‐stressed aphids, Wolbachia abundance increased twofold and Arsenophonus decreased 1.5‐fold. A similar pattern was observed under xenobiotic stress, with Buchnera and Arsenophonus titers decreasing (1.3‐fold) and Wolbachia increasing (1.5‐fold). Furthermore, variation in aphid virulence to Rag1 was positively correlated with changes in Arsenophonus titers, but not Wolbachia or Buchnera. A single Arsenophonus multi‐locus genotype was found among aphid clonal lines, indicating strain diversity is not primarily responsible for correlated host‐symbiont stress levels. Overall, our results demonstrate the nature of aphid symbioses can significantly affect the outcome of interactions under stress and suggests general changes in the microbiome can occur across multiple stress types.  相似文献   

19.
Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1‐year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.  相似文献   

20.
Field studies in soybeans have demonstrated that the endemic predator, Orius insidiosus (Say), is an important natural enemy of the soybean aphid, Aphis glycines Matsumura. Soybean thrips, Neohydatothrips variabilis (Beach), serve as an important prey resource for O. insidiosus in soybeans and may be important in sustaining O. insidiosus populations before the arrival of soybean aphid. Because soybean aphid is new to the US soybean system, the effects of a mixed diet of soybean aphid and soybean thrips on O. insidiosus life history is not known. We measured the survival, development, and reproduction of O. insidiosus when fed soybean thrips, and a mixed prey diet of soybean aphids and soybean thrips, and compared these results to a previous study of O. insidiosus life history fed soybean aphid alone. Nymphal development to adulthood (15.9 days) and fecundity (68.8 eggs per female) was improved for O. insidiosus fed ad libitum soybean thrips daily compared to O. insidiosus fed ad libitum soybean aphids daily. The contribution of alternative prey to O. insidiosus life history characteristics can be complex depending on the amount and quality of a particular prey item. At low levels of prey, the addition of prey appears to enhance O. insidiosus survival, development, and fecundity. However, as predators are fed more often, the predator’s response depends on the type of prey that predominates in the mixed prey diet. We discuss soybean thrips impact on O. insidiosus population ecology and soybean aphid dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号