首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gyrinidae is a group of beetles with a unique specialization of swimming on the water surface. Heterogyrus milloti Legros (Heterogyrinae) from Madagascar is a species with various preserved plesiomorphic features. The information on the morphology and biology was very limited until recently, and the thoracic anatomy remained largely unknown. Consequently, the aim of the present study is to describe external and internal thoracic features of Heterogyrus Legros in detail and to interprete them with respect to their phylogenetic and functional significance, with a special focus on the unusual flight apparatus of Gyrinidae. Characters documented with innovative techniques are compared to conditions found in other gyrinid genera and other groups of Adephaga, including characters of other body parts and larvae. A data matrix with 144 characters of adults, larvae and eggs was compiled and analysed cladistically. Gyrinidae excluding Spanglerogyrus Folkers (Heterogyrinae + Gyrininae) is supported by many apomorphies, mainly by a unique locomotor apparatus with paddle‐like middle and hind legs. The results confirm Heterogyrus as the earliest diverging branch in Gyrinidae except Spanglerogyrus, implying a sister‐group relationship between this genus and Gyrininae, a clade comprising Gyrinini, Dineutini and Orectochilini. The presence of an opening between the mesanepisternum and elytra, reduction of the lateral metafurcal arms, loss of the metathoracic M. furcacoxalis lateralis, and modifications of the head, including the dorsal shift of the upper subcomponent of the compound eyes, are synapomorphies of the three tribes. The monophyly of Gyrinini is moderately well‐supported, whereas Orectochilini is strongly supported by different characters including a highly simplified but functioning flight apparatus. A clade comprising Orectochilini and the dineutine genera is suggested by synapomorphies of adults and larvae. The monophyly of Dineutini was supported in a recent study, but not by the characters analysed here. Features of adults, larvae and eggs indicate that Gyrinidae are the sister group to the remaining adephagan families, as suggested in some earlier morphology‐based studies and recent analyses of large molecular datasets.  相似文献   

2.
The larvae of the grooved whirligig beetle Macrogyrus oblongus (Boisduval, 1835) are described and illustrated including detailed morphometric and chaetotaxic analyses of selected structures. Larvae of Macrogyrus Régimbart, 1882 Régimbart, M. (1882), ‘Essai Monographique de la Famille des Gyrinidae. 1re partie’, Annales de la Société entomologique de France, 51, 379458. [Google Scholar] exhibit the characters traditionally recognised as autapomorphies of the Gyrinidae. The first instars bear egg bursters on the parietal, a potential additional autapomorphy. Putative larval autapomorphies of the tribe Dineutini are the presence of additional setae on the mandible, the absence of the seta TR2, and the presence of pore-like additional structures on the ultimate palpomeres. Macrogyrus larvae differ from those of the other known dineutine genera (Andogyrus Ochs, 1924 and Dineutus MacLeay, 1825) in the absence of a neck constriction and in the distal position of the pore LAc. Other useful characters to distinguish genera within Dineutini are the presence or absence of additional setae on the cardo and coxa, and the posterior margin of the lacinia dentate or smooth.  相似文献   

3.
A phylogenetic analysis of Adephaga is presented. It is based on 148 morphological characters of adults and larvae and focussed on a placement of the recently described Meruidae, and the genus‐level phylogeny of the smaller aquatic families Gyrinidae, Haliplidae and Noteridae. We found a sister group relationship between Gyrinidae and the remaining adephagan families, as was found in previous studies using morphology. Haliplidae are either the sister group of Dytiscoidea or the sister group of a clade comprising Geadephaga and the dytiscoid families. Trachypachidae was placed as the sister group of the rhysodid‐carabid clade or of Dytiscoidea. The monophyly of Dytiscoidea including Meru is well supported. Autapomorphies are the extensive metathoracic intercoxal septum, the origin of the metafurca from this structure, the loss of Mm. furcacoxalis anterior and posterior, and possibly the presence of an elongated subcubital setal binding patch. Meruidae was placed as sister group of the Noteridae. Synapomorphies are the absence of the transverse ridge of the metaventrite, the fusion of abdominal segments III and IV, the shape of the strongly asymmetric parameres, and the enlargement of antennomeres 5, 7 and 9. The Meru‐noterid clade is the sister group of the remaining Dytiscoidea. The exact position of Aspidytes within this clade remains ambiguous: it is either the sister group of Amphizoidae or the sister group of a clade comprising this family and Hygrobiidae + Dytiscidae. The sister group relationship between Spanglerogyrinae and Gyrininae was strongly supported. The two included genera of Gyrinini form a clade, and Enhydrini are the sister group of a monophylum comprising the remaining Enhydrini and Orectochilini. A branching pattern (Peltodytes + (Brychius + Haliplus)) within Haliplidae was confirmed. Algophilus, Apteraliplus and the Haliplus‐subgenus Liaphlus form a clade. The generic status of the two former taxa is unjustified. The Phreatodytinae are the sister group of Noterinae, and Notomicrus (+ Speonoterus), Hydrocoptus, and Pronoterus branch off successively within this subfamily. The search for the larvae of Meru and a combined analysis of morphological and molecular data should have high priority. © The Willi Hennig Society 2006.  相似文献   

4.
A phylogenetic analysis of the diving beetle tribe Hydaticini Sharp (Coleoptera: Dytiscidae: Dytiscinae) is presented based on data from adult morphology, two nuclear (histone III and wingless) and two mitochondrial (cytochrome c oxidase I and II) protein‐coding genes. We explore how to best partition a data set of multiple nuclear and mitochondrial protein‐coding genes by using Bayes factor and a penalized modification of Bayes Factor. Ten biologically relevant partitioning strategies were identified ranging from all DNA analysed under a single model to each codon position of each gene treated with a separate model. Model selection criteria AIC, AICc, BIC and four ways of traversing parameter space in a hierarchical likelihood ratio test were applied to each partition. All unique partitioning and model combinations were analysed with Bayesian methods. Results show that partitioning by codon position and genome source (nuclear vs. mitochondrial) is strongly favoured over partitioning by gene. We also find evidence that Bayes Factor can penalize overparameterization even when comparing nested models. Species groups showing a strong geographical pattern were generally highly supported, however, the sister group relationship of an isolated Madagascan and Australian species were shown to be artefactual with a long‐branch extraction test. The following conclusions were supported in both the selected method of partitioning the Bayesian analysis and combined parsimony analyses: (i) the tribe Hydaticini is monophyletic (ii) the genus Hydaticus Leach is paraphyletic with respect to Prodaticus Sharp (iii) the subgenus Hydaticus (Hydaticus) is monophyletic, and (iv) the subgenus H. (Guignotites) Brinck is paraphyletic with respect to Prodaticus and the subgenera H. (Pleurodytes) Régimbart and H. (Hydaticinus) Guignot. Based on these results, Hydaticus and Prodaticus are each recognized as valid genera and Guignotites, Hydaticinus and Pleurodytes are each placed as junior synonyms of Prodaticus (new synonymies).  相似文献   

5.
Phylogenetic relationships among members of the diving beetle tribe Cybistrini (Coleoptera: Dytiscidae) were inferred from analysis of 47 adult and larval morphological characters and sequences from portions of the genes cytochrome oxidase I (COI) and II (COII), histone III (H3) and wingless. Thirty‐three species of Cybistrini were included, representing all genus‐groups except Regimbartina Chatanay and Megadytes (Bifurcitus) Brinck, and most historically recognized species groups and subgenera used in the tribe. Outgroups include six species from other tribes within Dytiscinae and Lancetinae. Analyses included parsimony analysis of the combined data, likelihood analysis of combined molecular data and partitioned Bayesian analysis of the combined data. Results indicate that Cybistrini is well supported as a monophyletic group. Within the tribe, all currently recognized genus groups were found to be monophyletic with the exception of Onychohydrus Schaum, which is paraphyletic with respect to Austrodytes Watts in the parsimony analysis, but monophyletic in the likelihood and Bayesian analyses, and Cybister sensu stricto, which is paraphyletic with respect to C. (Melanectes) Brinck and C. (Scaphinectes) Ádám in the parsimony analysis or only the latter in the likelihood and Bayesian analyses. Results also suggest that some, but not all, historically recognized species groups or subgenera in the large genus Cybister Curtis are monophyletic, and this is discussed and compared. To improve the classification, the name Sternhydrus Brinck is elevated from subgenus to genus rank ( new status ). Four subgenera in the genus Cybister are recognized: C. (Melanectes) Brinck, C. (Megadytoides) Brinck ( resurrected ), C. (Neocybister) Miller, Bergsten and Whiting ( new subgenus ) and C. (Cybister) Curtis. The following new synonyms are established: Trochalus Dejean ( new synonym ), and ScaphinectesÁdám = Cybister (Cybister) ( new synonym ). The Neotropical species Cybister parvus Trémouilles (not examined) apparently does not fit any historical or currently recognized genus‐group diagnosis in Cybistrini, so it is retained in Cybister but incertae sedis with respect to subgenus. In addition to classification, the evolution of the unique character combinations present in cybistrines are discussed. A key to the adults of genera and subgenera is presented.  相似文献   

6.
Two dytiscid beetle species, Leiodytes nicobaricus (Redtenbacher) and Platambus stygius (Régimbart), are identified for the first time in Korea. Diagnoses, habitus and scanning electron microscopy photographs, and line drawings of the diagnostic characters are provided.  相似文献   

7.
Acute response of Orectogyrus alluaudi Régimbart, 1889 to sodium hypochlorite was reported after a 48-h acute toxicity test in an imitated field condition. O. alluaudi belongs to the water beetle family Gyrinidae (whirligig beetles) which includes more than 700 species. The test organisms were exposed to various concentrations of sodium hypochlorite ranging from 10 to 160 mg/l along with the control, and median lethal concentration (LC50) values at 24 and 48 h of exposure were assessed. Mortality increased with the concentration of exposure. The 24 and 48 h LC50 values estimated for sodium hypochlorite were 87.30 (73.21–107.06) and 72.32 (62.24–84.53) mg/l, respectively. A significant mortality (P < 0.001) was observed at 40, 80 and 160 mg/l of sodium hypochlorite when compared with the control. Addition of sodium hypochlorite altered the alkalinity and pH of the test water. Behavioural responses such as agitation and disorientation were also observed. The finding showed that indiscriminate use of the household bleach would have serious impact on the bionomics of this species.  相似文献   

8.
9.
The three larval instars of Hydaticus (Guignotites) tuyuensis Trémouilles are described and illustrated for the first time, emphasizing the morphometry and chaetotaxy. Second- and third-instar larvae of the known species of the subgenus Guignotites Brinck are characterized by a trilobate median process of prementum. All larval instars of H. tuyuensis, however, have a bilobate process, similar to that present in the known species of the subgenus Hydaticus Leach. This implies that a trilobate process cannot be used as a diagnostic character for Guignotites. Alternatively, Guignotites as presently defined may not represent a natural group. A cladistic analysis of 57 larval characters suggests that the genus Hydaticus shares a common origin with the clade composed of the genera Eretes Laporte and Thermonectus Dejean, based on the following synapomorphies: (i) abdominal segment VII almost completely sclerotized ventrally; the absence of (ii) additional ventroapical pores on the third antennomere, (iii) setae FE4 and FE6, (iv) additional setae on the femur and (v) additional setae on the tibia; and the presence of (vi) setae on the median process of prementum and (vii) spinulae on the second labial palpomere. A bilobate or trilobate median process of the prementum and the submedial insertion of seta AN3 distinguish Hydaticus from the remaining genera of Dytiscinae studied.  相似文献   

10.
Abstract. This study presents the first phylogenetic estimate for the pipunculid subfamily Chalarinae (genera Chalarus Walker, Jassidophaga Aczél and Verrallia Mik) based on an analysis of one mitochondrial coding (cytochrome oxidase 1) and two nuclear non‐coding genes (28s and ITS2), using parsimony under direct optimization as implemented in poy 4. It completes earlier taxonomic works on these groups. The voucher material used was primarily of Palaearctic origin. The study strongly supports the monophyletic origin of Chalarinae as well as of Chalarus and Verrallia, but failed to recover a monophyletic lineage for Jassidophaga. Whereas the taxa of Jassidophaga with predominantly black‐coloured legs clustered as a monophyletic sister to Verrallia, an Oriental Jassidophaga species with predominantly yellow/light brown‐coloured legs represents a distinct genetic lineage. The Chalarus species included were resolved into eight well‐supported genetic clades: C. angustifrons group, C. basalis group, C. clarus lineage, C. holosericeus group, C. immanis lineage, C. indistinctus group, C. latifrons group and C. spurius group. A phenetic analysis focused on intra‐ and interspecific genetic distances within the subfamily. As a consequence, the eastern Palaearctic C. rectifrons Morakote is proposed as a junior synonym of C. angustifrons Morakote ( syn.n. ). The structure of the C. basalis species group was investigated further with the intersimple sequence repeat (ISSR) primer (GACA)4.  相似文献   

11.
Abstract A phylogeny of the tribe Aphidini (Hemiptera: Aphididae) was reconstructed from three gene fragments: two mitochondrial regions, partial tRNA‐leucine + cytochrome oxidase II (tRNA/COII), partial 12S rRNA + tRNA‐valine + 16S rRNA (12S/16S) and one nuclear gene, the elongation factor‐1 alpha (EF1α). Bayesian phylogenetic (BP) analyses were performed on each individual dataset of tRNA/COII, 12S/16S and EF1α, and maximum parsimony (MP), Bremer support test, maximum likelihood (ML) and BP analysis were performed on the combined dataset. After comparing our molecular phylogenetic results with the classic classification based on morphological and ecological data, we analysed three main issues: the monophyletic relationships among tribes and subtribes, the validities of the latest taxonomic positions of genera and species and the status of certain Aphis species groups. Our results indicate that 36 of the species analysed, with the exception of Cryptosiphum artemisiae, are clustered within the clade of Aphidini. Also, the 28 species representative of the subtribe Aphidina were separated from the eight species representative of Rhopalosiphina; each monophyletic subtribe was supported by significant P‐values in the combined analysis. According to our results, Cryptosiphum should be moved to Macrosiphini because it is more closely related to the genera Lipaphis and Brevicoryne. The genus Toxoptera was recovered as non‐monophyletic. In Rhopalosiphina, three genera, Hyalopterus, Rhopalosiphum and Schizaphis, were relatively closer to each other than to the genus Melanaphis. In the relationships between species‐groups among Aphis, most species were separated into two main lineages; the fabae group seemed to be more closely related to the spiraecola and craccivora group rather than to the gossypii group.  相似文献   

12.
The family Buprestidae (jewel beetles or metallic wood‐boring beetles), contains nearly 15 000 species in 522 genera. Together with the small family Schizopodidae (seven species, three genera), they form the superfamily Buprestoidea. Adult Buprestoidea feed on flowers or foliage, whereas larvae are mostly internal feeders, boring in roots or stems, or mining the leaves of woody or herbaceous plants. The subfamilial and tribal classification of Buprestoidea remains unsettled, with substantially different schemes proposed by different workers based on morphology. Here we report the first large‐scale molecular phylogenetic study of the superfamily Buprestoidea based on data from four genes for 141 ingroup species. We used these data to reconstruct higher‐level relationships and to assess the current classification and the origins of the larval leaf‐mining habit within Buprestoidea. In our analyses, the monophyly of Buprestoidea was strongly supported, as was the monophyly of Schizopodidae and its placement sister to Buprestidae. Our results are largely consistent with the generally accepted major lineages of buprestoids, including clearly‐defined agrilines, buprestines–chrysochroines and early‐branching julodines–polycestines. In addition to Schizopodidae, three of the six subfamilies were monophyletic in our study: Agrilinae, Julodinae and the monogeneric Galbellinae (Galbella). Polycestinae was monophyletic with the exception of the enigmatic Haplostethini. Chrysochroinae and Buprestinae were not monophyletic, but were recovered together in a large mixed clade along with Galbella. The interrelationships of Chrysochroinae and Buprestinae were not well resolved; however they were clearly polyphyletic, with chrysochroine genera falling into several different well‐supported clades otherwise comprising buprestine genera. All Agrilinae were contained in a single strongly supported clade. Coraebini were dispersed throughout Agrilinae, with strong nodal support for several clades representing subtribes. Neither Agrilini nor Tracheini were monophyletic. The leaf‐mining genus Paratrachys (Paratracheini) was recovered within the Acmaeoderioid clade, consistent with the current classification, and confirming the independent origins of leaf‐mining within Polycestinae and Agrilinae. Additionally, our results strongly suggest that the leaf‐mining agriline tribe Tracheini is polyphyletic, as are several of its constituent subtribes. External root feeding was likely the ancestral larval feeding habit in Buprestoidea. The apparent evolutionary transitions to internal feeding allowed access to a variety of additional plant tissues, including leaves. Interestingly, the several genera of leaf‐mining agrilines do not form a monophyletic group. Many of these genera are diverse and highly specialized, possibly indicating adaptive radiations.  相似文献   

13.
Abstract Ephedra comprises approximately 50 species, which are roughly equally distributed between the Old and New World deserts, but not in the intervening regions (amphitropical range). Great heterogeneity in the substitution rates of Gnetales (Ephedra, Gnetum, and Welwitschia) has made it difficult to infer the ages of the major divergence events in Ephedra, such as the timing of the Beringian disjunction in the genus and the entry into South America. Here, we use data from as many Gnetales species and genes as available from GenBank and from a recent study to investigate the timing of the major divergence events. Because of the tradeoff between the amount of missing data and taxon/gene sampling, we reduced the initial matrix of 265 accessions and 12 loci to 95 accessions and 10 loci, and further to 42 species (and 7736 aligned nucleotides) to achieve stationary distributions in the Bayesian molecular clock runs. Results from a relaxed clock with an uncorrelated rates model and fossil‐based calibration reveal that New World species are monophyletic and diverged from their mostly Asian sister clade some 30 mya, fitting with many other Beringian disjunctions. The split between the single North American and the single South American clade occurred approximately 25 mya, well before the closure of the Panamanian Isthmus. Overall, the biogeographic history of Ephedra appears dominated by long‐distance dispersal, but finer‐scale studies are needed to test this hypothesis.  相似文献   

14.
Pristionchus pacificus has been established as a nematode model system in evolutionary developmental biology and evolutionary ecology. Field studies in North and South America, Asia, Africa and Europe indicated that nematodes of the genus Pristionchus live in association with scarab beetles. Here, we describe the first account of soil‐ and beetle‐associated nematodes on an island setting by investigating the island of Réunion in the Indian Ocean. Réunion has high numbers of endemic insects and is one among several attractive islands for biodiversity studies. Being of volcanic origin, Réunion is 2–3 million years old, making it the youngest of the Mascareigne islands. We show that beetle‐ and soil‐derived nematodes on Réunion are nearly exclusively hermaphroditic, suggesting that selfing is favoured over gonochorism (outcrossing) during island colonization. Among members of four nematode genera observed on Réunion, Pristionchus pacificus was the most prevalent species. A total of 76 isolates, in association with five different scarab beetles, has been obtained for this cosmopolitan nematode. A detailed mitochondrial haplotype analysis indicates that the Réunion isolates of P. pacificus cover all four worldwide clades of the species. This extraordinary haplotype diversity suggests multiple independent invasions, most likely in association with different scarab beetles. Together, we establish Réunion as a case study for nematode island biogeography, in which the analysis of nematode population genetics and population dynamics can provide insight into evolutionary and ecological processes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 170–179.  相似文献   

15.
《Systematic Entomology》2018,43(1):19-30
It is now rare to find a semi‐aquatic organism group with which to vigorously test whether their diversification model and distribution pattern are closely related to the Cenozoic temperature variation. This hypothesis is explored for water striders of the genera Aquarius Schellenberg, Gerris Fabricius and Limnoporus Stål, which comprise a monophyletic clade with primarily Holarctic distribution. We sample almost 90% of the currently recognized Aquarius , Gerris and Limnoporus species. Five DNA fragments from 62 species are used to reconstruct a phylogram. Divergence time is estimated using Bayesian relaxed‐clock method and three fossil calibrations. We investigate diversification dynamics, biogeography and ancestral state reconstruction by using maximum‐likelihood, Bayesian and parsimony approaches. Our results showed that the crown of the three genera originated and underwent an initial diversification in Asia at 72 Ma (HPD: 59–86 Ma) in the Late Cretaceous, subsequently expanding into other regions via dispersal. The Bering Land Bridge was the major migration route between Eurasia and North America but was interrupted before the early Oligocene (34 Ma). Ancestors most likely used lentic habitats, and a minimum of two independent shifts to lotic habitats occurred in the initial diversification. Cenozoic temperature variation regulated the evolutionary history of Holarctic water striders of the genera Aquarius , Gerris and Limnoporus . Temperature warming during Stage I (52–66 Ma) was associated with the disappearance of shallow lentic habitats; this phenomenon forced certain lentic lineages to colonize new lotic habitats and promoted the diversification of lineages. Temperature cooling during Stage II (after 34 Ma) was associated with the fragmentation of water habitats of the ‘mixed‐mesophytic’ belt, resulting in the extinction of historical taxa and influencing close lineages that shaped the present disjunct Eurasian–North American distribution.  相似文献   

16.
The phylogenetic relationships and evolutionary processes within the subfamily Pontoniinae, a speciose group of shrimps with diverse lifestyles (free living, semi‐symbiotic and symbiotic) inhabiting the coral reefs of tropical oceans, are an interesting and undeveloped subject of study. In this work, two mitochondrial ribosomal genes (12S rRNA and 16S rRNA) and two protein‐coding nuclear genes (Histone 3 and the sodium–potassium ATPase α‐subunit) were employed to reconstruct the phylogenetic relationships of 42 genera and 101 species within Pontoniinae. Compared to previous studies, ten additional genera were shown to be monophyletic groups, and the genera Dactylonia and Periclimenaeus were shown to be paraphyletic. The shallow‐water crinoid‐associated pontoniines were divided into several groups which were mostly consistent with the morphological analysis. The studied bivalve‐associated taxa exhibited ancestries that were traceable to different lineages, and two groups could be distinguished: Anchiopontonia + Conchodytes and Anchistus. The similar situation occurred in other echinoderm‐associated pontoniines. These results suggest that pontoniines sharing the same hosts may have different evolutionary origins resulting from multiple intrusions of their hosts by morphologically plastic ancestral groups.  相似文献   

17.
The monophyletic family Zhangsolvidae comprises stout‐bodied brachyceran flies with a long proboscis and occurring only in the Cretaceous, originally known in shale from the Early Cretaceous Laiyang Formation (Fm.) in China (Zhangsolva Nagatomi & Yang), subsequently from limestones of the Early Cretaceous Crato Fm. of Brazil. Cratomyoides Wilkommen is synonymized with Cratomyia Mazzarolo & Amorim, both from the Crato Fm.; Cratomyiidae is synonymized with Zhangsolvidae. Two genera and three species of Zhangsolvidae are described: Buccinatormyia magnifica Arillo, Peñalver & Pérez‐de la Fuente, gen. et sp.n. and B. soplaensis Arillo, Peñalver & Pérez‐de la Fuente, sp.n. , in Albian amber from Las Peñosas Fm. in Spain; and Linguatormyia teletacta Grimaldi, gen. et sp.n. , in Upper Albian–Lower Cenomanian amber from Hukawng Valley in Myanmar. Buccinatormyia soplaensis and Linguatormyia teletacta are unique among all Brachycera, extant or extinct, by their remarkably long, flagellate antennae, about 1.6× the body length in the latter species. A phylogenetic analysis of 52 morphological characters for 35 taxa is presented, 11 taxa being Cretaceous species, which supports placement of the family within Stratiomyomorpha, although not to any particular family within the infraorder. This published work has been registered in Zoobank, http://zoobank.org/urn:lsid:zoobank.org:pub:F32CF887‐7C37‐45D5‐BD6B‐135FE9B729A7 .  相似文献   

18.
Martin Fikáček 《Biologia》2006,61(2):149-157
Pachysternum loxodonta sp. n. from the Republic of the Congo and Pachysternum sulawesicum sp.n. from Sulawesi Island, Indonesia are described. The generic status of Pachysternum sculpticolle (Régimbart, 1907) is revised, the species is transferred to the genus Cyrtonion and its differences from C. ghanense Hansen, 1989 are discussed. Taxonomy of Pachysternum is discussed, dividing the genus prelusively into three species groups, one comprising all known Oriental and Eastern Palearctic species, and two comprising the Afrotropical species. Species with unclear positions within the genus Pachysternum or with questionable generic status are left as “Species incertae sedis”.  相似文献   

19.
20.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号