首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.  相似文献   

2.
We compared land cover, riparian vegetation, and instream habitat characteristics with stream macroinvertebrate assemblages in 25 catchments in the Carpathian Mountains in Central Europe. This study area was particularly selected because of its diverse history of forest and agricultural ecosystems linked to geopolitical dynamic, which provide a suite of unique landscape scale, land cover settings in one ecoregion. Canonical Correspondence Analysis (CCA) showed that variation in composition and structure of macroinvertebrate assemblages was primarily related to four land cover types, and not to riparian or instream habitat. These were the portions in the catchment areas of (1) broadleaved forest, (2) fine-grained agricultural landscape mosaic with scattered trees (e.g., pre-industrial cultural landscape), (3) mixed forest, and (4) natural grassland without trees. Principal Component Analysis (PCA) suggested that land cover types and stream channel substrates co-varied. The PCA also showed that chemical variables, including organic carbon, had higher values in the agricultural landscape compared to natural forests. The major source of variation among taxa in streams was higher abundance of Diptera in agricultural landscapes and of Plecoptera, Coleoptera, Trichoptera, and Amphipoda in forests. Gastropoda and Oligochaeta were more abundant in open, fine-grained agricultural landscape mosaics with scattered trees. Ephemeroptera taxa were quite indifferent to these gradients in catchment land cover, but showed a tendency of being more abundant in the pre-industrial cultural landscape. Our findings suggest that land cover can be used as a proxy of the composition and structure of macroinvertebrate assemblages. This means that land use management at the catchment scale is needed for efficient conservation and recovery of stream invertebrate communities.  相似文献   

3.
Resolving land cover hierarchy relationships in urban settings is important for defining the scale and type of management required to enhance stream health. We investigated associations between macroinvertebrate assemblages in urban streams of Hamilton, New Zealand, and environmental variables measured at multiple spatial scales comprising (i) local-scale physicochemical conditions, (ii) impervious area in multiple stream corridor widths (30, 50 and 100 m) along segments (sections of stream between tributary nodes) and for entire upstream networks, and (iii) total impervious area in stream segment sub-catchments and upstream catchments. Imperviousness was higher for stream segment sub-catchments than for entire catchments because of the agricultural headwaters of some urban streams. Imperviousness declined as corridor width declined at both segment and catchment scales reflecting the vegetated cover along most urban stream gullies. Upstream catchment imperviousness was strongly and inversely correlated with dissolved organic carbon concentration, whereas segment and upstream corridor scales were correlated with water temperature and pH. Corridor imperviousness appeared to be a stronger predictor than catchment imperviousness of Ephemeroptera, Plecoptera and Trichoptera taxa richness and the Quantitative Urban Community Index specifically developed to assess impacts of urbanisation. In contrast, imperviousness at all measured scales added only marginal improvement in assemblage-based models over that provided by the local-scale physicochemical variables of reach width, habitat quality, macrophyte cover, pH and dissolved oxygen concentration. These findings infer variable scales of influence affecting macroinvertebrate communities in urban streams and suggest that it may be important to consider local and corridor factors when determining mechanisms of urbanisation impacts and potential management options.  相似文献   

4.
1. Restoration of riparian forests has been promoted as a means of mitigating urban impacts on stream ecosystems. However, conventional urban stormwater drainage may diminish the beneficial effect of riparian forests.
2. The relative effects of riparian deforestation and catchment urbanisation on stream ecosystems have rarely been discriminated because urban land use and riparian degradation usually covary. However, land use at three scales (channel canopy cover along a 100-m site, riparian forest cover within 200 m of the channel for 1 km upstream, and catchment imperviousness) covaried only weakly along the lowland Yarra River, Victoria, Australia.
3. We tested the extent to which each land use measure explained macroinvertebrate assemblage composition on woody debris and in the sediments of pools or runs in the mainstem Yarra River in autumn and spring 1998.
4. Assemblage composition in both habitats and in both seasons was most strongly correlated with proportion of catchment covered by impervious surfaces. Sites with higher imperviousness had fewer sensitive taxa (those having a strong positive influence on indicators of biological integrity) and more taxa typical of degraded urban streams. Sensitive taxa rarely occurred in sites with >4% total imperviousness. However, within sites of similar imperviousness, those with more riparian forest cover had more dipteran taxa. Channel canopy cover did not explain assemblage composition strongly.
5. Riparian forest cover may influence richness of some macroinvertebrate taxa, but catchment urbanisation probably has a stronger effect on sensitive taxa. In catchments with even a small amount of conventionally drained urban land, riparian revegetation is unlikely to have an effect on indicators of stream biological integrity. Reducing the impacts of catchment urbanisation through dispersed, low-impact drainage schemes is likely to be more effective.  相似文献   

5.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices.  相似文献   

6.
7.
Riparian vegetation is known to affect aquatic macroinvertebrate communities through contributions of organic matter and shading. Despite the widespread degradation of riparian vegetation in Australia, there are relatively few studies examining the effect of changes in riparian vegetation on in-stream macroinvertebrate assemblages on individual catchments. In particular, information is lacking on the responses of macroinvertebrate communities in catchments dominated by agriculture, where farms that are managed at the paddock scale result in riparian vegetation condition varying over relatively short distances. In this study, macroinvertebrate assemblages were assessed from 12 reaches along a 25-km section of a small agricultural stream in south-eastern Australia. Riparian condition was assessed using in-stream coarse woody debris (CWD) levels and the rapid appraisal of riparian condition (RARC) index, a numerical system for categorising the health of riparian areas that incorporates sub-indices reflecting habitat continuity, vegetation cover, plant debris levels, native vegetation dominance, and other indicative features. There was a significant positive correlation between RARC scores and macroinvertebrate taxon richness (p < 0.01), and also between CWD scores and macroinvertebrate taxon richness (p < 0.05). In contrast, there was no significant correlation observed between riparian condition and the other macroinvertebrate indices (abundance, Shannon diversity, SIGNAL and SIGNAL2). Macroinvertebrate communities were significantly different in stream reaches from different riparian condition categories (ANOSIM; p < 0.05). Our results indicate that efforts to rehabilitate riparian vegetation may have a positive effect on in-stream biota even when implemented at a relatively small scale by individual landholders.  相似文献   

8.
SUMMARY 1. The effects of catchment urbanisation on water quality were examined for 30 streams (stratified into 15, 50 and 100 km2 ± 25% catchments) in the Etowah River basin, Georgia, U.S.A. We examined relationships between land cover (implying cover and use) in these catchments (e.g. urban, forest and agriculture) and macroinvertebrate assemblage attributes using several previously published indices to summarise macroinvertebrate response. Based on a priori predictions as to mechanisms of biotic impairment under changing land cover, additional measurements were made to assess geomorphology, hydrology and chemistry in each stream. 2. We found strong relationships between catchment land cover and stream biota. Taxon richness and other biotic indices that reflected good water quality were negatively related to urban land cover and positively related to forest land cover. Urban land cover alone explained 29–38% of the variation in some macroinvertebrate indices. Reduced water quality was detectable at c. >15% urban land cover. 3. Urban land cover correlated with a number of geomorphic variables such as stream bed sediment size (–) and total suspended solids (+) as well as a number of water chemistry variables including nitrogen and phosphorus concentrations (+), specific conductance (+) and turbidity (+). Biotic indices were better predicted by these reach scale variables than single, catchment scale land cover variables. Multiple regression models explained 69% of variation in total taxon richness and 78% of the variation in the Invertebrate Community Index (ICI) using phi variability, specific conductance and depth, and riffle phi, specific conductance and phi variability, respectively. 4. Indirect ordination analysis was used to describe assemblage and functional group changes among sites and corroborate which environmental variables were most important in driving differences in macroinvertebrate assemblages. The first axis in a non‐metric multidimensional scaling ordination was highly related to environmental variables (slope, specific conductance, phi variability; adj. R2=0.83) that were also important in our multiple regression models. 5. Catchment urbanisation resulted in less diverse and more tolerant stream macroinvertebrate assemblages via increased sediment transport, reduced stream bed sediment size and increased solutes. The biotic indices that were most sensitive to environmental variation were taxon richness, EPT richness and the ICI. Our results were largely consistent over the range in basin size we tested.  相似文献   

9.
This study investigates the use of aquatic macrophytes as indicators of stream condition in catchments with varied land use and levels of riparian disturbance in the Wet Tropics region of North Queensland (Australia), a region of global significance in terms of faunal and floral diversity. In a paired catchment design spatial variations in macrophyte assemblage structure were characterised using multivariate and univariate techniques. Seven metrics were trialled: total macrophyte cover, species richness, % alien taxa, % native taxa, % submerged taxa, % emergent taxa and % Poaceae. Forty-four macrophyte taxa were recorded from the study area. Poaceae, Cyperaceae and mosses were the most frequently recorded taxa. Upper catchment areas in all tributaries surveyed were dominated by mosses and Cladopus queenslandicus (Domin) C.D.K. Cook (Podestemaceae). This assemblage occurred in areas with intact riparian canopy cover and good overall riparian condition. Macrophyte assemblages in lower catchment areas were distributed along gradients of riparian disturbance. Simultaneous autoregression model coefficients indicated that riparian condition had a negative influence on macrophyte cover, species richness and the proportions of alien taxa, emergent taxa and Poaceae present at sites in the Wet Tropics. Macrophyte metrics were not strongly influenced by the types of land use or water quality. These findings suggest that a riparian condition assessment would provide an adequate first assessment of the state of aquatic macrophyte assemblages in Wet Tropics streams.  相似文献   

10.
1. Land‐use studies are challenging because of the difficulty of finding catchments that can be used as replicates and because land‐use effects may be obscured by sources of variance acting over spatial scales smaller than the catchment. To determine the extent to which land‐use effects on stream ecosystems are scale dependent, we designed a whole‐catchment study of six matched pairs (pasture versus native tussock) of second‐order stream catchments, taking replicate samples from replicate bedforms (pools and riffles) in each stream. 2. Pasture streams had a smaller representation of endemic riparian plant species, particularly tussock grasses, higher bank erosion, a somewhat deeper layer of fine sediment, lower water velocities in riffles, less moss cover and higher macroinvertebrate biodiversity. At the bedform scale, suspendable inorganic sediment (SIS) was higher in pools than riffles and in pasture streams there was a negative relationship between SIS and the percentage of the bed free of overhanging vegetation. Differences between stream reaches (including any interactions between land use and stream pair) were significant for SIS, substrate depth and characteristics of riparian vegetation. There were also significant differences between replicate bedforms in the same stream reaches in percentage exotic species in overhanging vegetation, percentage moss cover, QMCI (Quantitative Macroinvertebrate Community Index – a macroinvertebrate‐based stream health index) and macroinvertebrate density. 3. Significant differences among stream reaches and among replicate bedform units within the same reach, as well as interactions between these spatial units and land‐use effects, are neither trivial nor ‘noise’ but represent real differences among spatial units that typically are unaccounted for in stream studies. Our multi‐scale study design, accompanied by an investigation of the explanatory power of different factors operating at different scales, provides an improved understanding of variability in nature.  相似文献   

11.
Conservation and restoration of riparian vegetation in agricultural landscapes has had mixed success at protecting in‐stream habitat, potentially due to the mismatch between watershed‐scale impacts and reach‐scale restoration. Prioritizing contiguous placement of small‐scale restoration interventions may effectively create larger‐scale restoration projects and improve ecological outcomes. We performed a multi‐site field study to evaluate whether greater linear length of narrow riparian tree corridors resulted in measurable benefits to in‐stream condition. We collected data at 41 sites with varying upstream tree cover nested within 13 groups in rangeland streams in coastal northern California, United States. We evaluated the effect of riparian tree corridor length on benthic macroinvertebrate communities, as well as food resources, water temperature, and substrate size. Sites with longer riparian corridors had higher percentages of invertebrates sensitive to disturbance (including clingers and EPT taxa) as well as lower water temperatures and less fine sediment, two of the most important aquatic stressors. Despite marked improvement, we found no evidence that macroinvertebrate communities fully recovered, suggesting that land use continued to constrain conditions. The restoration of long riparian corridors may be an economically viable and rapidly implementable technique to improve habitat, control sediment, and counter increasing water temperatures expected with climate change within the context of ongoing land use.  相似文献   

12.
1. As the climate changes, species are expected to shift to higher latitudes and altitudes where suitable habitat is available if dispersal is not constrained by geographic barriers. We analyse patterns of turnover in freshwater macroinvertebrate assemblages to identify which communities are most likely to be at risk from climate change, and the location of geographic barriers that could impede such adaptive range shifts. 2. We analysed macroinvertebrate data from standard biological assessments at the family level, from surveys of all coastal basins of New South Wales, Australia, covering a latitudinal gradient of more than 1000 km. We used variance partitioning to separate the variation in composition explained by climate, among‐site distance, human disturbance and other stream factors. 3. Montane stream assemblages showed high turnover in response to climatic variation. Turnover in coastal‐fringe streams was least affected by climate, but strongly correlated with distance and stream variables. Significant shifts in assemblage composition occurred between habitats within catchments and across catchment boundaries. 4. Montane stream assemblages are most vulnerable to climate change because their distribution is most responsive to climatic factors, and elevated sites are isolated from one another, reducing the scope for altitudinal migration. Dispersal limitations in coastal‐fringe assemblages will also increase their vulnerability to habitat loss from sea‐level rise. For all stream classes, the separation of many neighbouring catchment assemblages, owing to either limited dispersal or the lack of suitable habitat, is likely to constrain adaptive range shifts. This would lead to an overall reduction in beta diversity among reaches and subsequently to a reduction in landscape‐level gamma diversity.  相似文献   

13.
Blanket peat catchments are important biodiversity refugia. Key pressures on peatland catchment water bodies include artificial drainage, forestry, over-grazing, wind farm development and climate change, and assessment of these pressures requires sensitive monitoring programmes. This study, undertaken in two neighbouring blanket peat catchments, examined the variability in macroinvertebrate and diatom assemblages and related indices in response to spatial and seasonal variability. Multivariate analysis revealed significant trends in the taxa distribution of both groups and the indices downstream and away from the constraining influence of the peat. However, the ecological quality ratios and status assessments for the associated water bodies were consistent irrespective of spatial variability in assemblages and raw indices. Significant seasonal trends emerged only in the macroinvertebrate assemblages and indices. This study contributes to the understanding of sources of uncertainty in ecological assessment and thus provides valuable information for the calibration of assessment protocols for sensitive peatland catchments.  相似文献   

14.
We examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario. Thirty-three μ-basins (129–1458 ha) were used to identify land cover variables that influenced stream macroinvertebrates. Micro-basins represented the entire drainage area of study streams and were similar in stream order (first, second) and land cover (agricultural or forest; no urban). We described the structure and composition of riparian vegetation and benthic macroinvertebrate communities at the outflow reach. The nature of the land cover was quantified for the stream network buffer (30 m) and the whole μ-basin. The objective of this study was to measure the magnitude and nature of the relationship between the riparian vegetation and benthic macroinvertebrate community at the outflow reach, stream network buffer, and whole μ-basin scales. Taxon richness (including total number of Ephemeroptera, Plecoptera, and Trichoptera taxa) and Simpson’s diversity of the macroinvertebrate community all increased with increased tree cover in the riparian zone at the outflow reach scale. Simpson’s equitability was lower with greater agricultural land cover in the stream network buffer. No relationship between the macroinvertebrate community and land cover was found at the whole μ-basin scale. Analysis of the influence of land cover on stream communities within a spatial hierarchy is important for understanding the interactions of stream ecosystems with their adjacent landscapes.  相似文献   

15.
Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.  相似文献   

16.

Aim

Ecological models that do not account for interactions among stressors, if interactions are important, could be inaccurate and lead to inefficient conservation strategies. Conversely, if interactions are not important (i.e., stressors operate largely independently), then actions concentrating on a stressor‐by‐stressor basis would be warranted. Here, we investigated whether interactions among multiple stressors affected widely used indices of freshwater macroinvertebrate biodiversity, which are sensitive to environmental change at management‐relevant scales (i.e., reaches and catchments).

Location

State of Victoria, south‐eastern Australia.

Methods

We used a 7,418‐sample dataset for stream macroinvertebrates from 2,165 sites distributed over 237,630 km2 for 20 years. We calculated the interactive effects on stream macroinvertebrates of stressors operating at different scales, namely vegetation loss at the catchment and reach scales and hydrological change and salinization at the local scale. The importance of interactions among multiple stressors was assessed by comparing the cross‐validated predictive performance of models with and without multiple stressor interaction terms.

Results

Cross‐validated models explained 31%–63% of the variation in the macroinvertebrate responses. The most important stressors were catchment vegetation loss (the proportion of remaining native vegetation cover) and salinity. The inclusion of interaction terms did not increase cross‐validated predictive performance, which indicates that there was little evidence that interactions among stressors were important for explaining variation in commonly used freshwater macroinvertebrate condition indices.

Main conclusions

Interactions among vegetation, salinity and hydrological change stressors may not always be of importance for determining patterns of stream macroinvertebrate biodiversity, so that such interactions may not necessarily be critical considerations for catchment and reach scale management, at least if based on these or comparable condition indices. The mitigation of the impacts of vegetation loss, salinization and hydrological change stressors one‐by‐one probably is sufficient to guide conservation activities and might be advantageous if socio‐political contexts make it difficult to address interactions among stressors.
  相似文献   

17.
1. The restoration of native, forested riparian habitats is a widely accepted method for improving degraded streams. Little is known, however, about how the width, extent and continuity of forested vegetation along stream networks affect stream ecosystems. 2. To increase the likelihood of achieving restoration goals, restoration practitioners require quantitative tools to guide the development of restoration strategies in different catchment settings. We present an empirically based model that establishes a relationship between a ‘stress’ imposed at different locations along a stream by the spatial pattern of land cover within catchments, and the response of biologically determined ecosystem characteristics to this stress. The model provides a spatially explicit, quantitative framework for predicting the effects of changes in catchment land cover composition and spatial configuration on specific characteristics of stream ecosystems. 3. We used geospatial datasets and biological data for attached algae and benthic macroinvertebrates in streams to estimate model parameters for 40 sites in 33 distinct catchments within the mid‐Atlantic Piedmont region of the eastern U.S. Model parameters were estimated using a genetic optimisation algorithm. R2 values for the resulting relationships between catchment land cover and biological characteristics of streams were substantially improved over R2 values for spatially aggregated regression models based on whole‐catchment land cover. 4. Using model parameters estimated for the mid‐Atlantic Piedmont, we show how the model can be used to guide restoration planning in a case study of a small catchment. The model predicts the quantitative change in biological characteristics of the stream, such as indices of species diversity and species composition, that would occur with the implementation of a hypothetical restoration project.  相似文献   

18.
19.
1. Many natural ecosystems are heterogeneous at scales ranging from microhabitats to landscapes. Running waters are no exception in this regard, and their environmental heterogeneity is reflected in the distribution and abundance of stream organisms across multiple spatial scales. 2. We studied patchiness in benthic macroinvertebrate abundance and functional feeding group (FFG) composition at three spatial scales in a boreal river system. Our sampling design incorporated a set of fully nested scales, with three tributaries, two stream sections (orders) within each tributary, three riffles within each section and ten benthic samples in each riffle. 3. According to nested anova s, most of the variation in total macroinvertebrate abundance, abundances of FFGs, and number of taxa was accounted for by the among‐riffle and among‐sample scales. Such small‐scale variability reflected similar patterns of variation in in‐stream variables (moss cover, particle size, current velocity and depth). Scraper abundance, however, varied most at the scale of stream sections, probably mirroring variation in canopy cover. 4. Tributaries and stream sections within tributaries differed significantly in the structure and FFG composition of the macroinvertebrate assemblages. Furthermore, riffles in headwater (second order) sections were more variable than those in higher order (third order) sections. 5. Stream biomonitoring programs should consider this kind of scale‐dependent variability in assemblage characteristics because: (i) small‐scale variability in abundance suggests that a few replicate samples are not enough to capture macroinvertebrate assemblage variability present at a site, and (ii) riffles from the same stream may support widely differing benthic assemblages.  相似文献   

20.
Macroinvertebrate communities in alpine streams have rarely been examined over more than two consecutive years or at sub-monthly temporal resolution during the summer melt season, in relation to a range of stream physicochemical habitat measurements. This paper addresses these research gaps by investigating the inter- (late melt season, 1996–2003) and intra-annual (bi-weekly; June–September, 2002–2003) community compositional stability and persistence of three alpine streams fed from different water sources (snow, glaciers and groundwater) in the Taillon–Gabiétous catchment, French Pyrénées. Inter-annual community stability and persistence decreased from 1996 to 2003; however, groundwater stream communities changed less than those in the main glacial stream. Intra-annual community stability varied spatially and temporally, particularly in relation to water quality variables (water temperature and suspended sediment concentration); water quantity (stream discharge) was less important perhaps due to taxa possessing adaptations to flow variability. The 15 most abundant taxa were consistently more stable and persistent than the entire stream community suggesting a common pool of taxa in these streams. Overall, the results support the view that streams originating from different alpine water sources are characterised by distinct benthic macroinvertebrate assemblages, and demonstrate the value of sampling at nested temporal scales (inter-annual to bi-weekly) for understanding how these stream ecosystems function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号