首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
T. Górski  K. Górska 《Planta》1979,144(2):121-124
Using glass filters that transmit various spectral bands and different intensities of natural daylight, experiments with achenes of lettuce cv. Vanquard were performed. Germination during prolonged treatment depended both on the far red/red radiation ratio and on the irradiance. The promotive effect of red radiation present in natural light prevailed at low irradiances, the inhibitory effect of far red radiation at high irradiances. The dormancy imposed by prolonged white light of high intensity can be cancelled by transferring the achenes to darkness or to diffuse weak white light. The effects are obviously of the high irradiance response type; they are exerted by the same mechanism that causes seed dormancy under leaf canopies. Some considerations on the ecological significance of seed behaviour are given.Abbreviations FR far red radiation - R red radiation - HIR high irradiance response - Pfr the far red absorbing form of phytochrome - Pr the red absorbing form of phytochrome  相似文献   

2.
Abstract

Self‐excitation of leaf movements in Oxalis regnellii was studied under the influence of different constant conditions as darkness or irradiation of red or far‐red. Since in Oxalis two oscillating systems have to be regarded to, attention was focussed upon the development in time of self‐excitation of both systems. Similar to previous findings under dim white light the self‐excitation of the spreading system preceeds the foldings system in time in all cases.

A behavioral difference as response to red and far‐red could be found in the rate of self‐excitation. While under the influence of continuous red light maximal amplitudes are reached within three free‐running periods, under far‐red this effect needs only one period. In connection to this result, the deceleration of leaf closure caused by far‐red (well‐known from experiments in legumes, and now also observed in Oxalis), can be shown to reflect the interference of two antagonistic effects. Since self‐excitation starts rapidly under far‐red and generally begins with the excitation of the spreading movement, nastic closure can be compensated by the first free‐running spike of the spreading system. In addition, a computer program is presented to simulate amplitude‐dips and phase‐shifts caused by antagonistic effects of two locally separated systems. In this program each oscillator activity is implied to perform a steep spike with following slow decline (collision function).  相似文献   

3.
Rapidly increasing levels of light pollution subject nocturnal organisms to major alterations of their habitat, the ecological consequences of which are largely unknown. Moths are well‐known to be attracted to light at night, but effects of light on other aspects of moth ecology, such as larval development and life‐history, remain unknown. Such effects may have important consequences for fitness and thus for moth population sizes. To study the effects of artificial night lighting on development and life‐history of moths, we experimentally subjected Mamestra brassicae (Noctuidae) caterpillars to low intensity green, white, red or no artificial light at night and determined their growth rate, maximum caterpillar mass, age at pupation, pupal mass and pupation duration. We found sex‐specific effects of artificial light on caterpillar life‐history, with male caterpillars subjected to green and white light reaching a lower maximum mass, pupating earlier and obtaining a lower pupal mass than male caterpillars under red light or in darkness. These effects can have major implications for fitness, but were absent in female caterpillars. Moreover, by the time that the first adult moth from the dark control treatment emerged from its pupa (after 110 days), about 85% of the moths that were under green light and 83% of the moths that were under white light had already emerged. These differences in pupation duration occurred in both sexes and were highly significant, and likely result from diapause inhibition by artificial night lighting. We conclude that low levels of nocturnal illumination can disrupt life‐histories in moths and inhibit the initiation of pupal diapause. This may result in reduced fitness and increased mortality. The application of red light, instead of white or green light, might be an appropriate measure to mitigate negative artificial light effects on moth life history.  相似文献   

4.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

5.
White, blue, green, red, and deep red illumination were usedto shorten a dark period for plants of Bauhinia monandra under12 hour: 12 hour alternations of white light and darkness. Redalone imitated the effect of white light in advancing the cycleof leaf movement. Deep red did not counteract the effect ofprevious illumination with white light.  相似文献   

6.
The aim of this work was to assess the responses of seedlings of five species of Nicotiana genus to red and far red radiation. N. acuminata exhibits positive photoblastic behaviour and germination was completely inhibited under far red and darkness. In N. glauca germination was reduced under far red and darkness, but the other species showed neutral behaviour. The hypocotyl elongation was inhibited in N. glauca and N. tabacum under white and far red radiation. In N. langsdorffii and N. debneyi hypocotyl was elongated under far red radiation. Only in N. acuminata red radiation promote greater hypocotyl elongation than dark condition. On the phylogenetic tree obtained from restriction analysis N. glauca and N. acuminata are grouped in one branch, while the other species, N. langsdorffii, N. debneyi and N. tabacum, are grouped in the other branch cluster. Moreover, the N. debneyi behaviours under different radiation treatments were similar to those of N. tabacum. These two species are allopolyploid members of the genus Nicotiana, as also was confirmed by this study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
As the dominant seed dispersal agents in many ecosystems, frugivorous animals profoundly impact gene movement and fine‐scale genetic structure of plants. Most frugivores engage in some form of destination‐based dispersal, in that they move seeds towards specific destinations, resulting in clumped distributions of seeds away from the source tree. Molecular analyses of dispersed seeds and seedlings suggest that destination‐based dispersal may often yield clusters of maternal genotypes and lead to pronounced local genetic structure. The long‐wattled umbrellabird Cephalopterus penduliger is a frugivorous bird whose lek mating system creates a species‐specific pattern of seed dispersal that can potentially be distinguished from background dispersal processes. We used this system to test how destination‐based dispersal by umbrellabirds into the lek affects gene movement and genetic structure of one of their preferred food sources Oenocarpus bataua, a canopy palm tree. Relative to background dispersal processes, umbrellabird mating behaviour yielded more diverse seed pools in leks that included on average five times more seed sources and a higher incidence of long‐distance dispersal events. This resulted in markedly lower fine‐scale spatial genetic structure among established seedlings in leks than background areas. These species‐specific impacts of destination‐based dispersal illustrate how detailed knowledge of disperser behaviour can elucidate the mechanistic link driving observed patterns of seed movement and genetic structure.  相似文献   

8.
This study tested the behavioural effects of tagging subyearling and yearling lingcod Ophiodon elongatus with acoustic telemetry tags in laboratory tanks and in the natural environment (Puget Sound, WA). In the laboratory, tagged individuals showed less movement and feeding behaviour soon after tagging than untagged controls. The effect dissipated after c. 1 week, presumably as the tagged O. elongatus recovered from surgery or adjusted to the presence of the tags. This dissipation enabled a field study that compared early‐tagged individuals with a long recovery period after tagging to recently‐tagged individuals with a short recovery period after tagging. Consistent with findings from the laboratory experiment, recently tagged individuals showed less movement away from three release sites in Puget Sound than early‐tagged individuals. Together, the laboratory and field results provide evidence of temporary tag effects on actual movement in the natural environment and provide a method for testing tag effects in the field. This study suggests that subyearling and yearling O. elongatus should be held for a recovery period before release. If holding after tagging is not an option, then movement data collected during the first week should be interpreted cautiously.  相似文献   

9.
Abstract

Knowledge of the circadian behaviour of young tuatara (Sphenodon spp.) is relatively scarce because tuatara are difficult to observe in the wild. We document diurnal, nocturnal and crepuscular emergence and movements (half‐body movement, walking and running) of three groups of captive juvenile tuatara (2‐ and 3‐year‐old Sphenodon guntheri, and 5‐year‐old S. punctatus). Juvenile tuatara emerge predominantly at night, but move around above ground, mainly during the day and around sunset. Differences in emergence andmove‐ment scores between the three study groups were evident, probably linked with age, species or housing conditions, which were inevitably coupled in our study. We found that 2‐year‐old tuatara in captive conditions emerged less frequently than, but once above ground, moved more than 3‐ and 5‐year‐olds in semi‐captive conditions. Activities in semi‐captive conditions were not correlated with temperature, light or humidity. We conclude that young tuatara may be primarily adapted to nocturnal activity, but thermal restrictions and possible hardwired adaptations to avoid predators and conspecifics may make day‐time movements safer.  相似文献   

10.
STN7 kinase catalyzes the phosphorylation of the globally most common membrane proteins, the light‐harvesting complex II (LHCII) in plant chloroplasts. STN7 itself possesses one serine (Ser) and two threonine (Thr) phosphosites. We show that phosphorylation of the Thr residues protects STN7 against degradation in darkness, low light and red light, whereas increasing light intensity and far red illumination decrease phosphorylation and induce STN7 degradation. Ser phosphorylation, in turn, occurs under red and low intensity white light, coinciding with the client protein (LHCII) phosphorylation. Through analysis of the counteracting LHCII phosphatase mutant tap38/pph1, we show that Ser phosphorylation and activation of the STN7 kinase for subsequent LHCII phosphorylation are heavily affected by pre‐illumination conditions. Transitions between the three activity states of the STN7 kinase (deactivated in darkness and far red light, activated in low and red light, inhibited in high light) are shown to modulate the phosphorylation of the STN7 Ser and Thr residues independently of each other. Such dynamic regulation of STN7 kinase phosphorylation is crucial for plant growth and environmental acclimation.  相似文献   

11.

The influence of natural plant odours on the locomotory behaviour of 3rd‐instar larvae of Costelytra zealandica (White) was studied by observing their movement in glass‐sided test chambers. Through an analysis of the paths followed by individual larvae in single‐option choice‐chamber tests it was possible to evaluate the responses of the larvae to different plant materials. The odour of fresh young perennial ryegrass (Loliumperenne) root was more attractive to the insects than was that of older plants. Larvae were also more strongly attracted to the root of lucerne (Medicago sativa), Lotus pedunculatus, red clover (Trifolium pratense), and white clover (T. repens) than to that of perennial ryegrass. The possible role of volatile chemical factors in plant resistance to grass grub attack is discussed.  相似文献   

12.
We investigated the spectral sensitivity and response to light intensity of Aphidius gifuensis (Hymenoptera: Braconidae), a key natural enemy of the green peach aphid, Myzus persicae (Hemiptera: Aphididae). We used 15 monochromatic lights (emitting various specific wavelengths from 340 to 689 nm) and white light. Monochromatic light of different wavelengths and white light elicited photopositive behaviour from A. gifuensis. The strongest response was stimulated by blue light (492 nm), which induced a movement of 43.5 cm, a response that differed from all other groups. This was followed by green light (568 nm) and UV-light (380 nm). There was no significant response to orange light (601 nm) or red light (649, 668 and 689 nm) from A. gifuensis. The response intensity curve for A. gifuensis to monochromatic light (492 nm) decreased as light intensity increased. At 568 nm, the phototactic response showed an ‘S’ shaped curve. But at 628 nm, the phototactic response rose continuously with increasing intensity. We report here that the visual system of A. gifuensis is composed of three spectrum receptors, attuned to UV, blue and green light. While light intensity is a key factor in determining the photopositive response of A. gifuensis, the effect of intensity varies by wavelength.  相似文献   

13.
A. Schwartz  E. Zeiger 《Planta》1984,161(2):129-136
The supply of energy for stomatal opening was investigated with epidermal peels of Commelina communis L. and Vicia faba L., under white, blue and red irradiation or in darkness. Fluencerate response curves of stomatal opening under blue and red light were consistent with the operation of two photosystems, one dependent on photosynthetic active radiation (PAR) and the other on blue light, in the guard cells. The PAR-dependent system was 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-sensitive and KCN-resistant and showed a relatively high threshold irradiance for its activation; its activity was most prominent at moderate to high irradiances. The blue-light-dependent photosystem was KCN-sensitive, was active at low irradiances, and interacted with the PAR-dependent photosystem at high blue irradiances. Stomatal opening in darkness, caused by CO2-free air, fusicoccin or high KCl concentrations, was KCN-sensitive and DCMU-resistant. These data indicate that stomatal opening in darkness depends on oxidative phosphorylation for the supply of high-energy equivalents driving proton extrusion. Light-dependent stomatal opening appears to require photophosphorylation from guard-cell chloroplasts and the activation of the blue-light photosystem which could rely either on oxidative phosphorylation or a specific, membrane-bound electron-transport carrier.Abbreviations DCMU 3(3,4-dichlorophenyl)-1-1-dimethylurea - FC fusicoccin - KCN potassium cyanide - PAR photosynthetic active radiation - WL white light  相似文献   

14.
Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra.  相似文献   

15.
Abstract

Pupal eclosion of Trichogramma evanescens Westw. was studied in different conditions of light‐darkness and temperature fluctuations. The results revealed that under natural light cycles Trichogramma exhibits a distinct rhythm of emergence from pupae. Maximum emergence takes place in the morning. This rhythm persists in constant dim red light and temperature, so it is endogenous in nature. The rhythm can be entrained by artificial 24‐h temperature cycles or by day‐night cycles of light with a very low intensity of illumination (<0.01 lux). Nevertheless a single pulse of bright light or of high temperature is not able to reset the rhythm. The emergence rhythm was also absent if the culture was grown in constant darkness and temperature.  相似文献   

16.
A cell culture of Chenopodium album was cultivated under differentlight conditions (UV, blue, white, red light, and darkness).Red-violet coloured betacyanin-containing cell groups were formedon the surface of the cell culture only under UV-light or UV-containinglight qualities (blue and white), respectively. A direct correlationexists between UV-portions of different light qualities andthe number of red-violet cell groups formed, whereas light conditionswithout UV-light do not induce betacyanin formation. Betacyaninsformed under UV-light were degraded after transfer to red lightand darkness. The phytohormone kinetin enhanced the betacyaninformation in white light, but was unable to induce betacyaninsin darkness. The phytohormone 2, 4-D totally inhibited the formationof betacyanins under all light conditions studied. All otherinvestigated parameters of primary and secondary metabolismof the cells (protein content, respiration activity, concentrationof carotenoids and flavonoids) only unspecifically increasedin reaction to continuous UV-light irradiation. A selected yellowcoloured cell strain autotroph to auxin was unable to form betacyaninunder continuous UV-light irradiation and under increased kinetinconcentration. Key words: Betacyanins, cell culture, phytohormones, secondary product formation, UV-light  相似文献   

17.
Abstract The ‘end-of-day’ phytochrome control of internode growth was characterized in Sinapis alba, seedlings previously grown under continuous white light for 13 d. The transition from white light to darkness caused a reduction in internode extension rate with a lag of less than 10 min. Following this, extension rate remained almost constant for at least 48 h. i.e. ‘re-etiolation’ was not noticed. The phytochorme controlling the growth processes was stable in the Pfr form. The growth rate of plants receiving a red light pulse, and the growth promotion caused by a far-red light pulse, increased with increasing fluence rate of the previous white light treatment. In far-red treated plants a first growth rate acceleration peaked at 20–30 min after the end of white light, followed by a transient deceleration which led to a growth rate minimum at 40–60 min, followed by a final growth rate recovery yielding a more-or-less steady elevated rate. Pulses establishing different Pfr/P modified the extent, but not the early kinetics, of the growth response. The relative promotion of growth caused by low Pfr/P was limited by darkness as follows: (a), The growth promotion caused by far-red directed to the internode alone was transient. (b), The promotion caused by a reduction of Pfr/P in the whole shoot persisted in darkness for at least 48 h and also persisted if, after a 3–9 h dark period, the plants were returned to continuous white light. In darkness, however, the magnitude of this growth rate promotion decreased with time, particularly when the previous white light fluence rate was low, or the pulse preceding darkness provided the lowest Pfr/P. (c), When compared over the same period in darkness, growth rate was higher in those seedlings in which Pfr/P was reduced during the continuous white light pretreatment than in those ones in which the Pfr/P was only reduced immediately before darkness. It is proposed that in the natural environment, red/far-red signals could be more effective when provided during daytime than at the end of the photoperiod, as both the background growth rate and the relative promotion caused by low Pfr/P are reduced by darkness.  相似文献   

18.
Experiments were done to examine the phototrophic response of sun-tracking leaves of Lupinus succulentus Dougl. to fixed beams of white and broad band light. Upon irradiation with 15 W m−2 white light that struck the laminae at an angle of 45°, there was a 45–60 min lag period prior to leaf movement. The greatest rate of movement was 15° h−1, and reorientation ceased when leaves attained a position within 15° of perpendicular to the light beam. Laminar movement was largely pulvinar, and a 60 min inductive light treatment was sufficient to activate a maximum pulvinar response in subsequent darkness. Light striking the lamina at angles between 20 and 70° induced similar maximum pulvinar responses and only light that struck the upper (adaxial) leaf surface was effective. Leaf tracking was fully activated by blue light but not by red or yellow light.  相似文献   

19.
Spores of the fern, Onoclea sensihilis L., suffer a disruption of normal development when they are cultured on media containing colchicine. Cell division is inhibited, and the spores develop into giant spherical cells under continuous white fluorescent light. In darkness only slight cell expansion occurs. Spherical cell expansion in the light requires continuous irradiation. Photosynthesis does not seem to be involved, since variations in light intensity do not affect the final cell diameter; the addition of sucrose to the medium does not permit cell expansion in darkness; and the inhibitor DCMU does not block the light-induced cell expansion. Continuous irradiation of colchicine-treated spores with blue, red or far-red light produces different patterns of cell expansion. Blue light permits spherical growth, similar to that found under white light, whereas red and far-red light promote the reestablishment of polarized filamentous growth. Although ethylene is unable to induce polarized cell expansion in colchicine-treated spores in darkness or white and blue light, it enhances filamentous growth which already is established by red or far-red irradiation. Both red and far-red light increase the elongation of normal filaments (untreated with colchicine) above that of dark-grown plants, but under all 3 conditions the rates of volume growth are identical. Light, however, does cause a decrease in the cell diameters of irradiated filaments. These data are used to construct an hypothesis to explain the promotion of cell elongation in fern protonemata by red and far-red light. The model proposes light-mediated changes in microtubular orientation and cell wall structure which lead to restriction of lateral cell expansion and enhanced elongation growth.  相似文献   

20.
At suboptimal temperatures, anthocyanins accumulate in the illuminated leaf surface of some maize genotypes and, if the anthocyanins shade chloroplasts, they can effectively reduce the risk of photo‐inhibition but also photo‐synthesis. To investigate this phenomenon, gas exchange, fluorescence, superoxide dismutase activity and xantho‐phyll composition of anthocyanin‐containing HOPI and anthocyanin‐deficient W22 maize genotypes were measured in either white or red light, where the latter is not absorbed by anthocyanins. Despite differences in light absorption in chloroplasts, photosynthesis did not differ between HOPI and W22 under either light source, suggesting that neither CO2 supply nor photochemistry were more limiting in red leaves than in green leaves. In fact, no major differences in transpiration were detected. The ΔF/Fm (photosystem II quantum yield) of HOPI in white light was higher than in red light and higher than ΔF/Fm of W22 with either light source. This probably compensated for the lower white light absorption of HOPI chloroplasts compared with W22 because of the presence of anthocyanins and led to similar rates of calculated electron transport for both genotypes. After exposure to high white light at 5 °C, xanthophyll de‐epoxidation and superoxide dismutase activity were lower in HOPI than in W22. Further, HOPI could be exposed to a much higher irradiance than W22 before Fv/Fm was reduced to that of W22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号