首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the United States of America, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is commonly managed with transgenic corn (Zea mays L.) expressing insecticidal proteins from the bacteria Bacillus thuringiensis Berliner (Bt). Colonies of this pest have been selected in the laboratory on each commercially available transformation event and several resistant field populations have also been identified; some field populations are also resistant. In this study, progeny of a western corn rootworm population collected from a Minnesota corn field planted to SmartStax® corn were evaluated for resistance to corn hybrids expressing Cry3Bb1 (event MON88017) or Cry34/35Ab1 (event DAS‐59122‐7) and to the individual constituent proteins in diet‐overlay bioassays. Results from these assays suggest that this population is resistant to Cry3Bb1 and is incompletely resistant to Cry34/35Ab1. In diet toxicity assays, larvae of the Minnesota (MN) population had resistance ratios of 4.71 and >13.22 for Cry34/35Ab1 and Cry3Bb1 proteins, respectively, compared with the control colonies. In all on‐plant assays, the relative survival of the MN population on the DAS‐59122‐7 and MON88017 hybrids was significantly greater than the control colonies. Larvae of the MN population had inhibited development when reared on DAS‐59122‐7 compared with larvae reared on the non‐Bt hybrid, indicating resistance was incomplete. Overall, these results document resistance to Cry3Bb1 and an incomplete resistance to Cry34/35Ab1 in a population of WCR from a SmartStax® performance problem field.  相似文献   

2.
Fipronil is a member of the relatively new phenylpyrazole insecticide class that is active at the neuro‐inhibitory gamma amino butyric acid (GABA)‐gated chloride channel/ionopore complex. The toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolite [5‐amino‐1‐(2,6‐dichloro‐4‐trifluoromethylphenyl)‐3‐cyano‐4‐trifluoromethylsulfonylpyrazole] were investigated by using an insecticide‐susceptible western corn rootworm population. In topical bioassays using adult rootworms, fipronil was toxic at very low doses (LD50 = 0.07; LD90 = 0.33 ng/mg). At the LD90, pre‐treatment with the cytochrome P450 monooxygenase inhibitor piperonyl butoxide led to mild antagonism of fipronil toxicity (LD90 = 0.42 ng/mg), while the sulfone analog had greater toxicity (LD90 = 0.22 ng/mg). In neurophysiological studies of spontaneous electrical activity, adult and larval rootworms were equally affected by fipronil and the sulfone analog at 10 μM (in the presence of 5 mM GABA) in comparison to GABA‐treated baselines. Using larval rootworms, insensitivity of the GABA receptor to binding by picrotoxinin or dieldrin (10 μM ) was not apparent in the presence of 5 mM GABA. Further neurophysiological investigation using a range of concentrations (0.625–20.0 μM) on larval rootworms indicated concentration‐dependent effects on bursting activity for both fipronil and the sulfone analog; however, subtle differences were observed between these two compounds. Results indicate that both fipronil and its oxidative sulfone metabolite have similar toxicological and neurological effects on rootworms. Arch. Insect Biochem. Physiol. 40:150–156, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Acetylcholinesterase (AchE, EC 3.1.1.7) was purified from western corn rootworm (WCR, Diabrotica virgifera virgifera) beetles by affinity chromatography. The purification factor reached over 20,000-fold with a specific activity of 169.5 μmol/min/mg and a yield of 23%. The Vmax values for hydrolyzing acetylthiocholine (ATC), acetyl-(β-methyl)thiocholine (AβMTC), propionylthiocholine (PTC), and S-butyrylthiocholine (BTC) were 184.8, 140.5, 150.2, and 18.8 μmol/min/mg, respectively, and Km values were 19.7, 18.5, 14.1, and 11.0 μM, respectively. The first three substrates showed significant inhibition to the AchE at higher concentrations, whereas BTC showed inhibition at the concentrations of 0.25–2 mM but activation at >4 mM. AchE activity was almost completely inhibited by 1 μM eserine and BW284C15, respectively, but only 12% of AchE activity were inhibited by ethopropazine at the same concentration. These results suggested that the purified AchE from WCR was a typical insect AchE. Insecticides or their oxidative metabolites, chlorpyrifos-methyl oxon, carbofuran, carbaryl, malaoxon, and paraoxon, used in in vitro kinetic study exhibited high inhibition to AchE purified from WCR. However, chlorpyrifos-methyl oxon and carbofuran showed at least 36- and 4-fold, respectively, higher inhibitory potency than the remaining insecticides examined. Results from our in vitro inhibition of AchE agreed quite well with the previously published in vivo bioassay data. Arch. Insect Biochem. Physiol. 39:118–125, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Corn rootworms (Diabrotica spp.) make up the major insect pest complex of corn in the US and Europe, and there is a need for molecular markers for genetics studies. We used an enrichment strategy to develop microsatellite markers from the western corn rootworm (Diabrotica virgifera virgifera). Of 54 loci isolated, 25 were polymorphic, and of these, 17 were surveyed for variability in 59 wild individuals. In addition, the potential for cross‐amplification of these microsatellites was surveyed for Mexican, northern, and southern corn rootworms. Nine microsatellite loci showed Mendelian inheritance and are likely to be useful in population genetics studies.  相似文献   

5.
Event DAS‐59122‐7 is a novel transgenic trait designed to protect the roots and yield potential of maize from the insect pest corn rootworm Diabrotica spp. (Col.: Chrysomelidae). The increased pest status of corn rootworm, exceptional efficacy of this trait, and anticipated increases in farm efficiency and grower and environmental safety will drive adoption of this trait. Strong grower acceptance of this trait highlights the importance of science‐based and practical resistance management strategies. A non‐diapause trait was introgressed into two laboratory colonies of Diabrotica virgifera virgifera collected from geographically distinct locations: Rochelle, IL and York, NE. Both colonies were divided and each reared on maize containing event DAS‐59122‐7 or its near isoline. Selected and unselected colonies were evaluated for phenotypic change in larval development, injury potential and survival to adulthood during 10 and 11 generations. The F1 generation of both selected colonies displayed increased larval development, survivorship and measurable, but economically insignificant increases in injury potential on DAS‐59122‐7 maize. Survival rates of 0.4 and 1.3% in F1 generations of both selected colonies corroborate field estimates of survival on DAS‐59122‐7 maize. Over later generations, total phenotypic variation declined gradually and irregularly. Despite the absence of random mating, the tolerance trait could not be fixed in either population after 10 or 11 generations of selection. An allele conferring major resistance to DAS‐59122‐7 was not identified in either selected colony. The assessment also concluded that major resistance gene(s) are rare in populations of D. v. virgifera in the United States, and that a minor trait(s) conferring a low level of survival on DAS‐59122‐7 maize was present. The tolerance trait identified in this study was considered minor with respect to its impact on DAS‐59122‐7 maize efficacy, and the role this trait may play in total effective refuge for major resistance genes with recessive inheritance is the basis of future work.  相似文献   

6.
Abstract 1 The western corn rootworm (WCR), Diabrotica virgifera virgifera Leconte (Coleoptera: Chrysomelidae), creates economic and environmental concerns in the Corn Belt region of the U.S.A. To supplement the population control tactics of the Areawide Pest Management Program in Brookings, South Dakota, Geographical Information Systems (GIS) were used to examine the spatial relationships from 1997 to 2001 between WCR population dynamics, habitat structure, soil texture and elevation. 2 Using the inverse distance weighted interpolation technique, WCR population density maps were created from georeferenced emergence and post‐emergence traps placed in maize fields. For each year, these maps were overlaid with vegetation, soil and elevation maps to search for quantitative relationships. 3 Through visual interpretation and correlation analysis, shifts in landscape structure, such as size, number and arrangement of patches, were shown to associate with WCR population abundance and distribution in varying degrees. Contingency analysis showed that WCR population abundance is associated with soil texture and elevation. 4 An understanding of the interactions between WCR population dynamics and landscape variables provides information to pest managers, and this can be used to identify patterns in the landscape that promote high insect population density patches to improve pest management strategies.  相似文献   

7.
The transgenic maize (Zea mays L.) event MON 88017 produces the Bacillus thuringiensis Berliner (Bt) toxin Cry3Bb1 to provide protection from western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding. In response to reports of reduced performance of Cry3Bb1‐expressing maize at two locations in Illinois, we conducted a two‐year experiment at these sites to characterize suspected resistance, as well as to evaluate root injury and adult emergence. Single‐plant bioassays were performed on larvae from each population that was suspected to be resistant. Results indicate that these populations had reduced mortality on Cry3Bb1‐expressing maize relative to susceptible control populations. No evidence of cross‐resistance between Cry3Bb1 and Cry34/35Ab1 was documented for the Cry3Bb1‐resistant populations. Field studies were conducted that included treatments with commercially available rootworm Bt hybrids and their corresponding non‐Bt near‐isolines. When compared with their near‐isolines, larval root injury and adult emergence were typically reduced for hybrids expressing Cry34/35Ab1 either alone or in a pyramid. In many instances, larval root injury and adult emergence were not significantly different for hybrids expressing mCry3A or Cry3Bb1 alone when compared with their non‐Bt near‐isolines. These findings suggest that Cry34/35Ab1‐expressing Bt maize may represent a valuable option for maize growers where Cry3Bb1 resistance is either confirmed or suspected. Consistent trends in adult size (head capsule width and dry mass) for individuals recovered from emergence cages were not detected during either year of this experiment. Because of the global importance of transgenic crops for managing insect pests, these results suggest that improved decision‐making for insect resistance management is needed to ensure the durability of Bt maize.  相似文献   

8.
Field‐evolved resistance by the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte to the Cry3Bb1 trait expressed in maize, has been documented in areas of Nebraska USA. Currently, only limited information is available on life‐history traits of Cry3Bb1‐resistant field populations. Therefore, the Gassmann on‐plant bioassay was used to investigate the potential variability among four Cry3Bb1‐resistant WCR field collections made in 2011–2012 by focusing on the key parameters: larval survival, developmental stage and weight with specific emphasis on the impact of adult emergence timing on these parameters in subsequent progeny. Key results: In three of four collections, the susceptibility of larval progeny from adults that emerged early or late within a generation from Cry3Bb1 plants was similar. Each of the three collections exhibited complete resistance; that is, survival on Cry3Bb1 plants was greater or equal to survival on non‐Bt isoline plants. Bioassays from an additional field collection from one site 2 years (2013) after the original collection (2011) (both from Cry3Bb1 maize) indicated that resistance to Cry3Bb1 was maintained over time at the site despite Bt trait rotation in 2012. In general, comparative WCR life‐history parameter data from Cry3Bb1 and isoline maize indicate that fitness of field collections exhibiting complete resistance was similar on each hybrid. The mean proportion of larvae in third instar and mean weight of larvae recovered in bioassays from progeny of early‐ and late‐emerged adults was not significantly affected by emergence period. This suggests that delays in development and associated mean adult emergence commonly observed in populations that are susceptible to Cry3Bb1 may become smaller as populations become resistant to Cry3Bb1. Results from this article will inform Cry3Bb1 resistance mitigation efforts and contribute to the development of sustainable WCR management programmes.  相似文献   

9.
Dispersal of larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in specific combinations of transgenic corn expressing the Cry3Bb1 protein and nontransgenic, isoline corn was evaluated in a 2-yr field study. In total, 1,500 viable western corn rootworm eggs were infested in each subplot. Each year, plant damage and larval recovery were evaluated among four pedigree combinations (straight transgenic; straight nontransgenic corn; nontransgenic corn with a transgenic central, infested plant; and transgenic corn with a nontransgenic central, infested plant) on six sample dates between egg hatch and pupation. For each subplot, the infested plant, three successive plants down the row (P1, P2, and P3), the closest plant in the adjacent row of the plot, and a control plant were sampled. The number of western corn rootworm larvae recovered from transgenic rootworm-resistant plants adjacent to infested nontransgenic plants was low and not statistically significant in either 2001 or 2002. In 2001, significantly fewer larvae were recovered from transgenic rootworm-resistant plants than from nontransgenic plants when both were adjacent to infested, nontransgenic plants. In 2002, significantly more neonate western corn rootworm larvae were recovered from nontransgenic plants adjacent to infested, transgenic rootworm-resistant plants than nontransgenic plants adjacent to infested, nontransgenic plants on the second sample date. Together, these data imply that both neonate and later instar western corn rootworm larvae prefer nontransgenic roots to transgenic rootworm-resistant roots when a choice is possible. However, when damage to the infested, nontransgenic plant was high, western corn rootworm larvae apparently moved to neighboring transgenic rootworm-resistant plants and caused statistically significant, although only marginally economic, damage on the last sample date in 2001. Implications of these data toward resistance management plan are discussed.  相似文献   

10.
Five short-diapause laboratory lines of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), were selected for resistance to MON863, a variety of corn genetically modified with the Bacillus thuringiensis Berliner (Bt) transgene that expresses the Cry3Bb1 delta-endotoxin. Three of the selected lines were developed by incremental increase in the duration of exposure to MON863 over 11 generations (moderate selected lines). Two selected lines were developed from a control group by constant exposure to MON863 for at least 14 d posthatch over seven generations (intense selected lines). At the end of the experiment, survivorship, as measured by adult emergence, was approximately 4 times higher in each of the selected lines reared on MON863 compared with control lines. Estimates of realized heritabilities (h2) were 0.16 and 0.15 for the moderate and intense selected lines, respectively, and are consistent with h2 estimates reported previously from a variety of pest insects. These lines provide data necessary for evaluating the potential for Bt resistance within diabroticite beetles and will be useful for developing improved insect resistance management strategies.  相似文献   

11.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is one of the most economically important insect pests threatening the production of corn, Zea mays (L.), in the United States. Throughout its history, this insect has displayed considerable adaptability by overcoming a variety of pest management tactics, including the cultural practice of annual crop rotation. Since first reported in Illinois in the late 1980s, populations of the rotation‐resistant western corn rootworm have spread over a wide area of the eastern Corn Belt. Currently, little information is available concerning the interaction of rotation resistance with the use of genetically modified corn expressing insecticidal toxins from Bacillus thuringiensis Berliner (Bt), a popular tactic for preventing larval injury and its associated yield loss. The goal of this greenhouse experiment was to determine whether rotation‐resistant and rotation‐susceptible western corn rootworm larvae differ with respect to survival or development when exposed to single‐ or dual‐toxin (pyramided) Bt corn. Individual corn plants were infested with 225 near‐hatch eggs at the V5 (five leaf collar) growth stage. Larvae developed undisturbed on the root systems for 17 days, after which they were recovered using Berlese–Tullgren funnels. Surviving larvae were counted to estimate mortality, and head capsule widths were measured to assess development. Rotation‐resistant and rotation‐susceptible larvae had statistically similar mean levels of mortality and head capsule widths when exposed to both single‐toxin (Cry3Bb1 or Cry34/35Ab1) and pyramided (Cry3Bb1+ Cry34/35Ab1) Bt corn, suggesting that these two populations do not differ with respect to survival or development when exposed to Bt corn. Additionally, the statistically similar mean levels of mortality for larvae exposed to single‐toxin and pyramided Bt corn suggest that pyramided Bt hybrids containing the Cry3Bb1 and Cry34/35Ab1 toxins do not result in additive mortality for western corn rootworm larvae. Implications for management of this economically important pest are discussed.  相似文献   

12.
Rootworm control tactics have recently expanded to include transgenic maize, which express insecticidal proteins from Bacillus thuringiensis (Bt) to reduce larval injury and protect yield potential. Exceptional root protection, increased grower efficiency and improved safety have led to rapid adoption of this technology in the USA. As a result, there is a recognized need for resistance management programmes aimed at delaying rootworm resistance. An essential component of resistance management programmes is the development and implementation of effective resistance monitoring techniques. Five test populations of Diabrotica virgifera virgifera (LeConte) were used to evaluate the sensitivity of two techniques used to describe population susceptibility to the Bt proteins expressed in event DAS‐59122‐7 maize: a diet bioassay employing purified proteins applied to artificial diet and a novel technique using sub‐lethal measures of larval development on seedling maize. Test populations included Rochelle‐US, an unselected susceptible colony, three populations composed of 5%, 25% or 50% Rochelle‐S mixed with Rochelle‐US, and the Rochelle‐S selected colony. Rochelle‐S was derived from the same founding population as Rochelle‐US, but selected for survival on DAS‐59122‐7 maize. Selections identified a minor trait conferring increased tolerance, and greenhouse plant efficacy evaluations confirmed that after 10 generations of selection with no random mating, Rochelle‐S caused significantly more root injury to DAS‐59122‐7 than Rochelle‐US. Rochelle‐S present at 5% of the test population resulted in measurable but not significant increase in injury to DAS‐59122‐7 maize. The diet bioassay was relatively insensitive to the susceptibility differences between the Rochelle‐US and Rochelle‐S populations. Neither LC50 nor EC50 estimates produced statistically significant differentiation between test populations with 0%, 5%, 25% or 50% Rochelle‐S. The sub‐lethal assay clearly identified differences between Rochelle‐S and Rochelle‐US and an increased rate of larval development was measurable when the test population contained only 5% of Rochelle‐S.  相似文献   

13.
Susceptibility to Cry3Bb1 toxin from Bacillus thuringiensis (Bt) was determined for western corn rootworm, Diabrotica virgifera virgifera LeConte, neonates from both laboratory and field populations collected from across the Corn Belt. Rootworm larvae were exposed to artificial diet treated with increasing Cry3Bb1 concentrations, and mortality and growth inhibition were evaluated after 4-7 d. The range of variation in Bt susceptibility indicated by growth inhibition was similar to that indicated by mortality. Although interpopulation variation in susceptibility was observed, the magnitude of the differences was comparable with the variability observed between generations of the same population. In general, the toxin was not highly toxic to larvae and estimated LC50 and EC50 values were several times higher than those reported for lepidopteran-specific Cry toxins by using similar bioassay techniques. These results suggest that the observed susceptibility differences reflect natural variation in Bt susceptibility among rootworm populations and provide a baseline for estimating potential shifts in susceptibility that might result from selection and exposure to Cry3Bb1-expressing corn hybrids.  相似文献   

14.
Abstract  To develop spatial sampling plans for corn rootworm ( Diabrotica spp.) adults, their spatial distributions were characterized and economics of sampling plans were evaluated by comparing sampling costs between spatial and conventional (non-spatial) sampling plans. Semivariogram modelling and spatial by with distance indices showed that corn rootworm adults were significantly (P < 0.05) aggregated at peak population densities and any two samples were spatially correlated within approximately 45 m, with 39–90% of the variability explained by spatial dependence. Sampling costs for spatial sampling plans linearly increased as the sampling distance decreased and exponentially increased as the field size increased. Although sampling costs for non-spatial sampling plans were generally lower, spatial sampling plans could be more economical when the mean insect density became lower and the field size became smaller. This study demonstrated that spatial sampling plans could be optimized to minimize the sampling costs and maximize the spatial resolution.  相似文献   

15.
Agricultural systems often provide a model for testing ecological hypotheses, while ecological theory can enable more effective pest management. One of the best examples of this is the interaction between host‐plant resistance and natural enemies. With the advent of crops that are genetically modified to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt), a new form of host‐plant resistance has been introduced to agroecosystems. How Bt crops interact with natural enemies, especially insect pathogens in below‐ground systems, is not well understood, but provides a unique opportunity to study below‐ground tritrophic interactions. In this study, we used two species of entomopathogenic fungi and three species of entomopathogenic nematodes to determine how this community of soil‐borne natural enemies might interact with Bt maize (event 59122, expressing the insecticidal protein Cry34/35Ab1) to affect survival and development of western corn rootworm (Diabrotica virgifera virgifera), which is an obligate root feeder and a serious pest of maize. We ran two experiments, one in a greenhouse and one in a growth chamber. Both experiments consisted of a fully crossed design with two maize treatments (Bt maize and non‐Bt maize) and two entomopathogen treatments (present or absent). The community of entomopathogens significantly increased mortality of western corn rootworm, and Bt maize increased larval developmental time and mortality. Entomopathogens and Bt maize acted in an independent and additive manner, with both factors increasing the mortality of western corn rootworm. Results from this study suggest that entomopathogens may complement host‐plant resistance from Bt crops.  相似文献   

16.
Laboratory-reared western corn rootworms, Diabrotica virgifera virgifera, from colonies maintained at the North Central Agricultural Research Laboratory (NCARL) in Brookings, SD, are used extensively by many researchers in studies of the biology, ecology, behavior, and genetics of this major insect pest. A nondiapause colony developed through artificial selection in the early 1970s is particularly attractive for many studies because its generation time is much shorter than that of typical diapause colonies. However, the nondiapause colony has been in culture for approximately 190 generations without out-crossing. We compared variation at six microsatellite loci among individuals from the NCARL nondiapause colony (approximately 190 generations), main diapause colony (approximately 22 generations), four regional diapause colonies (3-8 generations), and four wild populations. Genetic diversity was very similar among the diapause laboratory colonies and wild populations. However, the nondiapause colony showed approximately 15-39% loss of diversity depending on the measure. Pairwise estimates of F(ST) were very low, revealing little genetic differentiation among laboratory colonies and natural populations. The nondiapause colony showed the greatest genetic differentiation with an average pairwise F(ST) of 0.153. There was little evidence that the laboratory colonies had undergone genetic bottlenecks except for the nondiapause colony. The nondiapause colony has suffered a moderate loss in genetic diversity and is somewhat differentiated from wild populations. This was not unexpected given its history of artificial selection for the nondiapause trait, and the large number of generations in culture. In contrast, the results indicate that the diapause colonies maintained at NCARL are genetically similar to wild populations.  相似文献   

17.
Susceptibility of Diabrotica virgifera virgifera (LeConte) larvae to DAS‐59122‐7 maize was evaluated using a laboratory technique that measures rootworm survival to adulthood on maize seedlings. This method produces direct measures of larval susceptibility using realistic exposure to the same range of insecticidal protein concentrations found in field‐grown DAS‐59122‐7 maize roots. First, second and third instars were reared to adulthood on DAS‐59122‐7 maize seedlings or a non‐transgenic, near‐isoline maize. Data on survival, adult gender ratio, adult weight and median emergence were collected. Overall, larval susceptibility to DAS‐59122‐7 maize was lower than earlier predictions ( Storer et al. 2006 ). Neonate survival on DAS‐59122‐7 maize was approximately 33% of isoline survival after 17 days, and the same 33% recovered and developed to adulthood when the isoline maize was substituted. Survival rate on DAS‐59122‐7 maize increased with instar. The mean survivorship was 0.5%, 26% and 65% when exposure to DAS‐59122‐7 maize began at the first, second and third instars, respectively. Exposure to DAS‐59122‐7 maize led to sub‐lethal effects on adult gender ratio, weight and median emergence. These effects decreased when exposure to DAS‐59122‐7 maize began at later instars. The killing effect of DAS‐59122‐7 maize on rootworm larvae appeared to result from the combined chronic effects and absence of a suitable host as perceived by the larvae. The relevance of these data and the methodology of estimating rootworm susceptibility to plant‐incorporated protectants are discussed in the context of the US Environmental Protection Agency’s functional definition of ‘high dose’ and use of refuge for resistance management ( EPA 1998a ). Based on these results it is evident that DAS‐59122‐7 maize does not meet the functional definitions of high dose as described by EPA (1998a,b) and ILSI (1999) , and the utility of refuge, refuge size and refuge placement for delaying rootworm resistance should be further investigated.  相似文献   

18.
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the most significant pest of field maize, Zea mays L. (Poaceae), in the USA. Maize plants expressing Bt toxins targeting the corn rootworm complex have been widely adopted and are the primary insecticidal control measure for this pest in North America. Insect resistance management tactics using various refuge structures have been adopted to ensure Bt products will retain durability. An assumption of the refuge strategy is that males and females emerging from Bt and refuge plantings mate randomly; this has not been tested in the field. We conducted cage studies using field populations of WCR in Indiana, USA, to generate empirical field data on mating rates between beetles emerging from Cry3Bb1‐expressing Bt and refuge maize plants. Two refuge configurations were tested; all refuge plants were labeled using the stable isotope 15N. This mark persists in adult beetles after eclosion, allowing for collection and analysis of isotopic ratios of all beetles. Additional data collected included adult emergence rates, timing and sex ratios for each of the treatments, and head capsule size and dry weights of beetles collected. Treatment had a significant effect on dry weight; mean dry weight decreased in Bt‐only treatments. Fisher's exact test of proportions of mating pairs of refuge and Bt insects indicated that mating was not random in 20% strip refuges and 5% seed blend treatments. We found high percentages of beetles that fed on Bt‐expressing plants as larvae, suggesting that mating between resistant beetles may not be rare even if random mating did occur.  相似文献   

19.
Feeding behaviour, feeding intensity and staying behaviour of neonate western corn rootworm (Diabrotica virgifera virgifera LeConte) larvae were evaluated in response to synthetic feeding stimulant blends. All of the treatments contained a 3‐sugar blend (glucose : fructose : sucrose, 30 : 4 : 4 mg/ml) and one of twelve free fatty acids. Each free fatty acid was tested in this blend at three different concentrations. The addition of the 12 : 0, 16 : 0, 16 : 1, 18 : 0, 18 : 1, 18 : 2 and 18 : 3 free fatty acids to the sugar blend significantly (P < 0.05) increased the percentage of larvae feeding, but did not increase food consumption per larva. Most of the free fatty acids elicited staying behaviour. At the lowest dose (0.1 mg/ml), all of the free fatty acids except the 18 : 0 and the 20 : 0 elicited staying by significantly more larvae than the sugar blend, and at the highest dose (1.0 mg/ml), eight free fatty acids (8 : 0, 10 : 0, 12 : 0, 14 : 0, 16 : 1, 18 : 1, 18 : 2 and 18 : 3) caused more larvae to stay compared to the sugar blend. Larvae were visibly impaired after exposure to some of the free fatty acids. At the highest dose, the 8 : 0, 10 : 0, 12 : 0, 14 : 0, 16 : 1, 18 : 1 and 18 : 2 free fatty acids were toxic to the larvae. At least 60% of larvae were impaired after exposure to the 12 : 0, 16 : 1 and 18 : 2 free fatty acids and the 8 : 0 and 10 : 0 free fatty acids caused 100% impairment or death. Synthetic blends were compared with liquid from crushed maize roots and with a methanol extract of maize roots. Feeding intensity and staying behaviour on the root liquid and the root extract were significantly greater than on any of the synthetic blends, suggesting the presence of additional compounds in maize roots that serve as feeding cues for western corn rootworm larvae.  相似文献   

20.
The northern corn rootworm (Diabrotica barberi) and Mexican corn rootworm (Diabrotica virgifera zeae) are significant agricultural pests. For the northern corn rootworm, and to a lesser extent, the Mexican corn rootworm, high resolution molecular markers are needed. Here we present 14 polymorphic microsatellite loci isolated from libraries constructed using pooled northern and Mexican corn rootworm genomic DNA. Polymorphism in other Diabrotica, including the banded cucumber beetle, southern corn rootworm and western corn rootworm, is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号