首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antagonistic coevolution between hosts and parasites can result in negative frequency‐dependent selection and may thus be an important mechanism maintaining genetic variation in populations. Negative frequency‐dependence emerges readily if interactions between hosts and parasites are genotype‐specific such that no host genotype is most resistant to all parasite genotypes, and no parasite genotype is most infective on all hosts. Although there is increasing evidence for genotype specificity in interactions between hosts and pathogens or microparasites, the picture is less clear for insect host–parasitoid interactions. Here, we addressed this question in the black bean aphid (Aphis fabae) and its most important parasitoid Lysiphlebus fabarum. Because both antagonists are capable of parthenogenetic reproduction, this system allows for powerful tests of genotype × genotype interactions. Our test consisted of exposing multiple host clones to different parthenogenetic lines of parasitoids in all combinations, and this experiment was repeated with animals from four different sites. All aphids were free of endosymbiotic bacteria known to increase resistance to parasitoids. We observed ample genetic variation for host resistance and parasitoid infectivity, but there was no significant host clone × parasitoid line interaction, and this result was consistent across the four sites. Thus, there is no evidence for genotype specificity in the interaction between A. fabae and L. fabarum, suggesting that the observed variation is based on rather general mechanisms of defence and attack.  相似文献   

2.
Genotype‐by‐genotype interactions demonstrate the existence of variation upon which selection acts in host–parasite systems at respective resistance and infection loci. These interactions can potentially be modified by environmental factors, which would entail that different genotypes are selected under different environmental conditions. In the current study, we checked for a G × G × E interaction in the context of average temperature and the genotypes of asexual lines of the endoparasitoid wasp Lysiphlebus fabarum and isolates of Hamiltonella defensa, a protective secondary endosymbiont of the wasp's host, the black bean aphid Aphis fabae. We exposed genetically identical aphids harbouring different isolates of H. defensa to three asexual lines of the parasitoid and measured parasitism success under three different temperatures (15, 22 and 29 °C). Although there was clear evidence for increased susceptibility to parasitoids at the highest average temperature and a strong G × G interaction between the host's symbionts and the parasitoids, no modifying effect of temperature, that is, no significant G × G × E interaction, was detected. This robustness of the observed specificity suggests that the relative fitness of different parasitoid genotypes on hosts protected by particular symbionts remains uncomplicated by spatial or temporal variation in temperature, which should facilitate biological control strategies.  相似文献   

3.
Host‐parasitoid interactions may lead to strong reciprocal selection for traits involved in host defense and parasitoid counterdefense. In aphids, individuals harboring the facultative bacterial endosymbiont, Hamiltonella defensa, exhibit enhanced resistance to parasitoid wasps. We used an experimental evolution approach to investigate the ability of the parasitoid wasp, Lysiphlebus fabarum, to adapt to the presence of H. defensa in its aphid host Aphis fabae. Sexual populations of the parasitoid were exposed for 11 generations to a single clone of A. fabae, either free of H. defensa or harboring artificial infections with three different isolates of H. defensa. Parasitoids adapted rapidly to the presence of H. defensa in their hosts, but this adaptation was in part specific to the symbiont isolate they were evolving against and did not result in an improved infectivity on all symbiont‐protected hosts. Comparisons of life‐history traits among the evolved lines of parasitoids did not reveal any evidence for costs of adaptation to H. defensa in terms of correlated responses that could constrain such adaptation. These results show that parasitoids readily evolve counter‐adaptations to heritable defensive symbionts of their hosts, but that different symbiont strains impose different evolutionary challenges. The symbionts thus mediate the host‐parasite interaction by inducing line‐by‐line genetic specificity.  相似文献   

4.
In order to reduce parasite‐induced mortality, hosts may be involved in mutualistic interactions in which the partner contributes to resistance against the parasite. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbours secondary bacterial endosymbionts, some of which have been reported to confer resistance against aphid parasitoids. Although this resistance often results in death of the developing parasitoid larvae, some parasitoid individuals succeed in developing into adults. Whether these individuals suffer from fitness reduction compared to parasitoids developing in pea aphid clones without symbionts has not been tested so far. Using 30 pea aphid clones that differed in their endosymbiont complement, we studied the effects of these endosymbionts on aphid resistance against the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae), host–parasitoid physiological interactions, and fitness of emerging adult parasitoids. The number of symbiont species in an aphid clone was positively correlated with a number of resistance measurements but there were also clear symbiont‐specific effects on the host–parasitoid interaction. As in previous studies, pea aphid clones infected with Hamiltonella defensa Moran et al. showed resistance against the parasitoid. In addition, pea aphid clones infected with Regiella insecticola Moran et al. and co‐infections of H. defensaSpiroplasma, R. insecticolaSpiroplasma, and R. insecticolaH. defensa showed reduced levels of parasitism and mummification. Parasitoids emerging from symbiont‐infected aphid clones often had a longer developmental time and reduced mass. The number of teratocytes was generally lower when parasitoids oviposited in aphid clones with a symbiont complement. Interestingly, unparasitized aphids infected with Serratia symbiotica Moran et al. and R. insecticola had a higher fecundity than unparasitized aphids of uninfected pea aphid clones. We conclude that in addition to conferring resistance, pea aphid symbionts also negatively affect parasitoids that successfully hatch from aphid mummies. Because of the link between aphid resistance and the number of teratocytes, the mechanism underlying resistance by symbiont infection may involve interference with teratocyte development.  相似文献   

5.
Heritable bacterial endosymbionts are common in aphids (Hemiptera: Aphididae), and they can influence ecologically important traits of their hosts. It is generally assumed that their persistence in a population is dependent on a balance between the costs and benefits they confer. A good example is Hamiltonella defensa Moran et al., a facultative symbiont that provides a benefit by strongly increasing aphid resistance to parasitoid wasps, but becomes costly to the host in the absence of parasitoids. Regiella insecticola Moran et al. is another common symbiont of aphids and generally does not influence resistance to parasitoids. In the green peach aphid, Myzus persicae (Sulzer), however, one strain (R5.15) was discovered that behaves like H. defensa in that it provides strong protection against parasitoid wasps. Here we compare R5.15‐infected and uninfected lines of three M. persicae clones to test whether this protective symbiont is costly as well, i.e., whether it has any negative effects on aphid life‐history traits. Furthermore, we transferred R5.15 to two other aphid species, the pea aphid, Acyrthosiphon pisum (Harris), and the black bean aphid, Aphis fabae Scopoli, where this strain is also protective against parasitoids and where we could compare its effects with those of additional, non‐protective strains of R. insecticola. Negative effects of R5.15 on host survival and lifetime reproduction were limited and frequently non‐significant, and these effects were comparable or in one case weaker than those of R. insecticola strains that are not protective against parasitoid wasps. Unless the benefit of protection is counteracted by detrimental effects on traits that were not considered in this study, R. insecticola strain R5.15 should have a high potential to spread in aphid populations.  相似文献   

6.
Insects harbour a wild diversity of symbionts that can spread and persist within populations by providing benefits to their host. The pea aphid Acyrthosiphon pisum maintains a facultative symbiosis with the bacterium Hamiltonella defensa, which provides enhanced resistance against the aphid parasitoid Aphidius ervi. Although the mechanisms associated with this symbiotic‐mediated protection have been investigated thoroughly, little is known about its evolutionary effects on parasitoid populations. We used an experimental evolution procedure in which parasitoids were exposed either to highly resistant aphids harbouring the symbiont or to low innate resistant hosts free of H. defensa. Parasitoids exposed to H. defensa gained virulence over time, reaching the same parasitism rate as those exposed to low aphid innate resistance only. A fitness reduction was associated with this adaptation as the size of parasitoids exposed to H. defensa decreased through generations. This study highlighted the considerable role of symbionts in host–parasite co‐evolutionary dynamics.  相似文献   

7.
Host defenses against parasites do not come for free. The evolution of increased resistance can be constrained by constitutive costs associated with possessing defense mechanisms, and by induced costs of deploying them. These two types of costs are typically considered with respect to resistance as a genetically determined trait, but they may also apply to resistance provided by ‘helpers’ such as bacterial endosymbionts. We investigated the costs of symbiont‐conferred resistance in the black bean aphid, Aphis fabae (Scopoli), which receives strong protection against the parasitoid Lysiphlebus fabarum from the defensive endosymbiont Hamiltonella defensa. Aphids infected with H. defensa were almost ten times more resistant to L. fabarum than genetically identical aphids without this symbiont, but in the absence of parasitoids, they had strongly reduced lifespans, resulting in lower lifetime reproduction. This is evidence for a substantial constitutive cost of harboring H. defensa. We did not observe any induced cost of symbiont‐conferred resistance. On the contrary, symbiont‐protected aphids that resisted a parasitoid attack enjoyed increased longevity and lifetime reproduction compared with unattacked controls, whereas unprotected aphids suffered a reduction of longevity and reproduction after resisting an attack. This surprising result suggests that by focusing exclusively on the protection, we might underestimate the selective advantage of infection with H. defensa in the presence of parasitoids.  相似文献   

8.
1. Hosts are often targeted by multiple species of parasites, leading to a confluence of selective pressures on them. In response, hosts may either evolve defences that act very generally, or specific defences against particular parasites. Aphids are attacked by multiple species of endoparasitoid wasps, and there is clear evidence that heritable endosymbionts can confer resistance against some of these wasps. Less clear is how symbiont‐conferred resistance in a single host acts against multiple parasitoid species. 2. This question was addressed in the black bean aphid, Aphis fabae (Scopoli). Unprotected aphids and aphids protected by three different strains of the defensive endosymbiont Hamiltonella defensa were exposed to four species of parasitic wasps: the parthenogenetic species Lysiphlebus fabarum (Marshall), which was represented by three different asexual lines, and the sexual species Aphidius colemani (Viereck), Binodoxys angelicae (Halliday), and Aphelinus chaonia (Walker). 3. Hamiltonella defensa provided strong protection against L. fabarum and Aphidius colemani, but there was no evidence that H. defensa‐infected aphids were more resistant to the other parasitoid species. While Aphidius colemani was virtually unable to parasitise any aphids harbouring H. defensa, there was variation among the three asexual lines of L. fabarum in how susceptible they were to the defence provided by the different symbiont strains, resulting in a significant genotype‐by‐genotype interaction. 4. The present results suggest that symbiosis with H. defensa does not provide aphids with a general defence against parasitoid wasps, possibly because some species have evolved specific counter adaptations or because biological differences preclude the symbiont's effectiveness against these species.  相似文献   

9.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

10.
Host recognition and use in female parasitoids strongly relies on host fidelity, a plastic behavior which can significantly restrict the host preferences of parasitoids, thus reducing the gene flow between parasitoid populations attacking different insect hosts. However, the effect of migrant males on the genetic differentiation of populations has been frequently ignored in parasitoids, despite its known impact on gene flow between populations. Hence, we studied the extent of gene flow mediated by female and male parasitoids by assessing sibship relationships among parasitoids within and between populations, and its impact on geographic and host‐associated differentiation in the aphid parasitoid Aphidius ervi. We report evidences of a high gene flow among parasitoid populations on different aphid hosts and geographic locations. The high gene flow among parasitoid populations was found to be largely male mediated, suggested by significant differences in the distribution of full‐sib and paternal half‐sib dyads of parasitoid populations.  相似文献   

11.
1. In solitary parasitoids, only one individual can complete development in a given host. Therefore, solitary parasitoids tend to prefer unparasitised hosts for oviposition, yet under high parasitoid densities, superparasitism is frequent and results in fierce competition for the host's limited resources. This may lead to selection for the best intra‐host competitors. 2. Increased intra‐host competitive ability may evolve under a high risk of superparasitism if this trait exhibits genetic variation, and if competitive differences among parasitoid genotypes are consistent across environments, e.g. different host genotypes. 3. These assumptions were addressed in the aphid parasitoid Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae) and its main host, the black bean aphid, Aphis fabae (Scopoli) (Hemiptera: Aphididae). Three parthenogenetic lines of L. fabarum were allowed to parasitise three aphid clones singly and in all pairwise combinations (superparasitism). The winning parasitoid in superparasitised aphids was determined by microsatellite analysis. 4. The proportions of singly parasitised aphids that were mummified were similar for the three parasitoid lines and did not differ significantly among host clones. 5. Under superparasitism, significant biases in favour of one parasitoid line were observed for some combinations, indicating that there is genetic variation for intra‐host competitive ability. However, the outcome of superparasitism was inconsistent across aphid clones and thus influenced significantly by the host clone in which parasitoids competed. 6. Overall, this study shows that the fitness of aphid parasitoids under superparasitism is determined by complex interactions with competitors as well as hosts, possibly hampering the evolution of improved intra‐host competitive ability.  相似文献   

12.
Aphids may harbor a wide variety of facultative bacterial endosymbionts. These symbionts are transmitted maternally with high fidelity and they show horizontal transmission as well, albeit at rates too low to enable infectious spread. Such symbionts need to provide a net fitness benefit to their hosts to persist and spread. Several symbionts have achieved this by evolving the ability to protect their hosts against parasitoids. Reviewing empirical work and some models, I explore the evolutionary ecology of symbiont‐conferred resistance to parasitoids in order to understand how defensive symbiont frequencies are maintained at the intermediate levels observed in aphid populations. I further show that defensive symbionts alter the reciprocal selection between aphids and parasitoids by augmenting the heritable variation for resistance, by increasing the genetic specificity of the host–parasitoid interaction, and by inducing environment‐dependent trade‐offs. These effects are conducive to very dynamic, symbiont‐mediated coevolution that is driven by frequency‐dependent selection. Finally I argue that defensive symbionts represent a problem for biological control of pest aphids, and I propose to mitigate this problem by exploiting the parasitoids’ demonstrated ability to rapidly evolve counteradaptations to symbiont‐conferred resistance.  相似文献   

13.
Organisms can either evade winter's unfavourable conditions by migrating or diapausing, or endure them and maintain their activities. When it comes to foraging during winter, a period of scarce resources, there is strong selective pressure on resource exploitation strategy. Generalist parasitoids are particularly affected by this environmental constraint, as their fitness is deeply linked to the profitability of the available hosts. In this study, we considered a cereal aphid–parasitoid system and investigated (1) the host–parasitoid community structure, host availability, and parasitism rate in winter, (2) the influence of host quality in terms of species and instars on the fitness of the aphid parasitoid Aphidius rhopalosiphi De Stefani‐Perez (Hymenoptera: Braconidae: Aphidiinae), and (3) whether there is a detectable impact of host fidelity on parasitism success of this parasitoid species. Host density was low during winter and the aphid community consisted of the species Rhopalosiphum padi L. and Sitobion avenae Fabricius (both Hemiptera: Aphididae), both parasitized by A. rhopalosiphi at non‐negligible rates. Aphidius rhopalosiphi produced more offspring when parasitizing R. padi compared with S. avenae, whereas bigger offspring were produced when parasitizing S. avenae. Although aphid adults and old larvae were significantly larger hosts than young larvae, the latter resulted in higher emergence rates and larger parasitoids. No impact of host fidelity on emergence rates or offspring size was detected. This study provides some evidence that winter A. rhopalosiphi populations are able to take advantage of an array of host types that vary in profitability, indicating that host selectivity may drop under winter's unfavourable conditions.  相似文献   

14.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

15.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

16.
Trophic interactions and environmental conditions determine the structure of food webs and the host expansion of parasitoids into novel insect hosts. In this study, we investigate plant–insect–parasitoid food web interactions, specifically the effect of trophic resources and environmental factors on the presence of the parasitoids expanding their host range after the invasion of Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae). We also consider potential candidates for biological control of this non‐native pest. A survey of larval stages of Plusiinae (Lepidoptera: Noctuidae) and their larval parasitoids was conducted in field and vegetable greenhouse crops in 2009 and 2010 in various locations of Essex and Chatham‐Kent counties in Ontario, Canada. Twenty‐one plant–host insect–host parasitoid associations were observed among Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), C. chalcites, and larval parasitoids in three trophic levels of interaction. Chrysodeixis chalcites, an old‐world species that had just arrived in the region, was the most common in our samples. The larval parasitoids Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Cotesia vanessae (Reinhard), Cotesia sp., Microplitis alaskensis (Ashmead), and Meteorus rubens (Nees) (all Hymenoptera: Braconidae) expanded their host range into C. chalcites changing the structure of the food web. Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae) was the most common parasitoid of T. ni that was not found in the invasive species. Plant species, host abundance, and agro‐ecosystem were the most common predictors for the presence of the parasitoids expanding their host range into C. chalcites. Our results indicate that C. sonorensis, C. vanessae, and C. floridanum should be evaluated for their potential use in biological control of C. chalcites and T. ni.  相似文献   

17.
The host specificity of insect parasitoids and herbivores is thought to be shaped by a suite of traits that mediate host acceptance and host suitability. We conducted laboratory experiments to identify mechanisms shaping the host specificity of the aphid parasitoid Binodoxys communis. Twenty species of aphids were exposed to B. communis females in microcosms, and detailed observations and rearing studies of 15 of these species were done to determine whether patterns of host use resulted from variation in factors such as host acceptance or variation in host suitability. Six species of aphids exposed to B. communis showed no signs of parasitism. Four of these species were not recognized as hosts and two effectively defended themselves from attack by B. communis. Other aphid species into which parasitoids laid eggs had low suitability as hosts. Parasitoid mortality occurred in the egg or early larval stages for some of these hosts but for others it occurred in late larval stages. Two hypotheses explaining low suitability were investigated in separate experiments: the presence of endosymbiotic bacteria conferring resistance to parasitoids, and aphids feeding on toxic plants. An association between resistance and endosymbiont infection was found in one species (Aphis craccivora), and evidence for the toxic plant hypothesis was found for the milkweed aphids Aphis asclepiadis and Aphis nerii. This research highlights the multifaceted nature of factors determining host specificity in parasitoids.  相似文献   

18.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

19.
Observed changes in mean temperature and increased frequency of extreme climate events have already impacted the distributions and phenologies of various organisms, including insects. Although some research has examined how parasitoids will respond to colder temperatures or experimental warming, we know relatively little about how increased variation in temperature and humidity could affect interactions between parasitoids and their hosts. Using a study system consisting of emerald ash borer (EAB), Agrilus planipennis, and its egg parasitoid Oobius agrili, we conducted environmentally controlled laboratory experiments to investigate how increased seasonal climate variation affected the synchrony of host–parasitoid interactions. We hypothesized that increased climate variation would lead to decreases in host and parasitoid survival, host fecundity, and percent parasitism (independent of host density), while also influencing percent diapause in parasitoids. EAB was reared in environmental chambers under four climate variation treatments (standard deviations in temperature of 1.24, 3.00, 3.60, and 4.79°C), while Oagrili experiments were conducted in the same environmental chambers using a 4 × 3 design (four climate variation treatments × 3 EAB egg densities). We found that EAB fecundity was negatively associated with temperature variation and that temperature variation altered the temporal egg laying distribution of EAB. Additionally, even moderate increases in temperature variation affected parasitoid emergence times, while decreasing percent parasitism and survival. Furthermore, percent diapause in parasitoids was positively associated with humidity variation. Our findings indicate that relatively small changes in the frequency and severity of extreme climate events have the potential to phenologically isolate emerging parasitoids from host eggs, which in the absence of alternative hosts could lead to localized extinctions. More broadly, these results indicate how climate change could affect various life history parameters in insects, and have implications for consumer–resource stability and biological control.  相似文献   

20.
1. Parasitoids are a valuable group for conservation biological control. In their role as regulators of aphid pests, it is critical that their lifecycle is synchronised with their hosts in both space and time. This is because a synchronised parasitoid community is more likely to strengthen the overall conservation biological control effect, thus damping aphid numbers and preventing potential outbreaks. One component of this host–parasitoid system was examined, that of migration, and the hypothesis that peak summer parasitoid and host migrations are synchronised in time was tested. 2. Sitobion avenae Fabricius and six associated parasitoids were sampled from 1976 to 2013 using 12.2‐m suction‐traps from two sites in Southern England. The relationship between peak weekly S. avenae counts and their parasitoids was quantified. 3. Simple regression models showed that the response of the peak parasitoids to the host was positive: generally, more parasitoids migrated with increasing numbers of aphids. Further, when averaged over time, the parasitoid migration peak date corresponded with the aphid migration peak. The co‐occurrence of the peaks was between 51% and 64%. However, the summer peak in aphid migration is not steadily shifting forward with time unlike spring first flights of aphids. Cross‐correlation analysis showed that there were no between‐year lagged effects of aphids on parasitoids. 4. These results demonstrate that the peak in migration phenology between host and parasitoid is broadly synchronised within a season. Because the threshold temperature for flight (> 12 °C) was almost always exceeded in summer, the synchronising agent is likely to be crop senescence, not temperature. Studies are needed to assess the effects of climate change on the mismatch potential between parasitoids and their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号