首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Breakdown of four leaf species ( Platanus orientalis , Populus nigra , Salix atrocinerea , Rubus ulmifolius ) was studied in a Mediterranean second-order stream characterised by abundant travertine precipitation, a history of fire in its catchment, and a recently revegetated alluvial corridor.
2. Compared to breakdown rates reported in the literature for congeneric species, breakdown of the four species was slow (k = 0.0024–0.0069 day−1 for the tree species, and 0.0103 and 0.0111 day−1 for Rubus ), in spite of high water temperatures, indicating that the travertine layer that quickly covered submerged leaves impeded decomposer activity and physical fragmentation losses.
3. Breakdown rates nevertheless differed between leaf species in a predictable manner, suggesting that the observed mass loss was largely due to biological processes.
4. The observed tendency towards increasing leaf nitrogen and phosphorus concentrations during breakdown suggests that microorganisms were actively involved in leaf breakdown; however, this interpretation must be viewed with caution because of potentially confounding effects by nutrients contained in the travertine layer.
5. Leaf breakdown of the three indigenous species was faster than that of the exotic species P. orientalis . Due to the recalcitrance of its leaves, the frequent use of Platanus in revegetation schemes following the destruction of indigenous vegetation by fire, exacerbates the negative effect of travertine precipitation on leaf breakdown and, by extension, energy flow in Mediterranean karst streams.  相似文献   

2.
The impact of a drought on freshwater snail and trematode communities was investigated in a lake. Before the drought, 15 gastropod species (Valvatidae, Planorbidae, Lymnaeidae, Ancylidae, Physidae) and 10 trematode species (cercariaeum, xiphidiocercariae, echinostome, furcocercariae, notocotyle, lophocercous) were recorded. The rate of parasitism was 5.13% and there were 11 host species. The 2 major consequences of desiccation were the disappearance of snails, except Valvata piscinalis and Lymnaea peregra, and the absence of trematodes infecting the surviving snails. As soon as favourable conditions were restored, the littoral area was recolonized, first by hygrophilic and amphibious species, second by aquatic species. Nine months after the drought, the gastropod community was restored. Recolonization by the trematodes was delayed compared with that of gastropods. During the study, the overall prevalence was equal to 0.36% and only 4 trematode species and 5 host species were recorded. Because of the great variability of freshwater ecosystems, long-term studies are necessary to understand the dynamics of snail and trematode populations and determine the regulatory effect of parasitism in the field.  相似文献   

3.
亚热带溪流中树叶凋落物多酚含量对树叶分解过程的影响   总被引:1,自引:1,他引:1  
官昭瑛  赵颖  童晓立 《生态科学》2008,27(5):436-436
利用邻二氮菲-铁(Ⅲ)分光光度法测定了蒲桃与人面子树叶在二级溪流中分解时植物多酚含量的变化,并研究了多酚含量对树叶分解速率、底栖动物定殖以及微生物呼吸量的影响。结果表明,蒲桃叶片中初始多酚含量(19%)比人面子树叶的含量高(6%),其分解速率(分解系数k=0.01d-1)比人面子树叶慢(k=0.04d-1)。研究还发现,蒲桃叶片上的微生物呼吸量比人面子的低(每克叶片单位时间的耗氧量分别为0.2和0.4毫克),而且底栖动物中撕食者的种类和数量也比人面子树叶少。说明蒲桃叶片中较高的多酚含量抑制了微生物的活性和底栖动物的取食,从而减缓了蒲桃树叶的分解进程,表明叶片中多酚含量与树叶凋落物分解速率呈负相关关系。  相似文献   

4.
Long-term assessments of species assemblages are valuable tools for detecting species ecological preferences and their dispersal tracks, as well as for assessing the possible effects of alien species on native communities. Here we report a 50-year-long study on population dynamics of the four species of land flatworms (Platyhelminthes, Tricladida, Terricola) that have colonized or become extinct in a 70-year-old Atlantic Forest regrowth remnant through the period 1955–2006. On the one hand, the two initially most abundant species, which are native to the study site, Notogynaphallia ernesti and Geoplana multicolor have declined over decades and at present do not exist in the forest remnant. The extinction of these species is most likely related with their preference for open vegetation areas, which presently do not exist in the forest remnant. On the other hand, the neotropical Geoplaninae 1 and the exotic Endeavouria septemlineata were detected in the forest only very recently. The long-term study allowed us to conclude that Geoplaninae 1 was introduced into the study area, although it is only known from the study site. Endeavouria septemlineata, an active predator of the exotic giant African snail, is originally known from Hawaii. This land flatworm species was observed repeatedly in Brazilian anthropogenic areas, and this is the first report of the species in relatively well preserved native forest, which may be evidence of an ongoing adaptive process. Monitoring of its geographic spread and its ecological role would be a good practice for preventing potential damaging effects, since it also feeds on native mollusk fauna, as we observed in lab conditions. Júlio Pedroni: Granted by CNPQ–Brazil.  相似文献   

5.
1. Allochthonous organic matter, in the form of senesced leaves, is a major source of carbon supporting detrital food webs. While studies have documented the role of bacteria and fungi in the decomposition of leaf litter, little information is available regarding the role of protists in the decomposition process. 2. We tested the hypothesis that the presence of stream‐dwelling bacterivorous protists leads to an increased rate of leaf decomposition through grazing pressure on bacteria. We isolated live protists from decomposing leaves collected in a stream in Northern Virginia, U.S.A. (Goose Creek) and established laboratory cultures of common bacterivorous protists. 3. Recently senesced leaves from the field were used in laboratory microcosm experiments to determine if the rate of litter decomposition differed between four treatments: bacteria only, bacteria + flagellates, bacteria + flagellates + ciliates, autoclaved stream water (control). We determined the dry weight of leaf remaining, bacterial abundance, flagellate abundance and ciliate abundance for each replicate on days 0, 7, 14, 30, 60 and 120. 4. The rate of leaf decomposition was significantly higher in treatments with protists than without and bacterial abundance declined in protist treatments compared with bacteria only treatment. Weight loss in the presence of flagellates was three to four times higher when protists were present compared with treatments with bacteria alone. These results provide experimental evidence that protists could play a significant role in the detrital processes of streams.  相似文献   

6.
树叶凋落物在受酸性矿山废水污染溪流中的分解   总被引:2,自引:0,他引:2  
为了解华南地区酸性矿山废水对溪流中树叶分解的影响,在广东省大宝山矿区附近的1条受酸性矿山废水污染(pH值为2.7—3.4且富含多种重金属元素)的3级溪流中,利用2种孔径(5ram的网袋和0.1ram的布袋)的分解网袋对2种树叶(人面子和蒲桃)进行了为期101d的树叶分解研究。结果表明,人面子树叶网袋和布袋中的树叶干重剩余率分别为39%和48%,而蒲桃树叶网袋和布袋中的干重剩余率仍保持较高的水平,分别为61%和70%。根据指数衰减模型计算出树叶分解的半衰期,人面子树叶在网袋和布袋中的分解半衰期分别为57d和69d,而蒲桃树叶则分别为14-4d和217d。蒲桃树叶的分解速率明显比人面子树叶慢。在网袋中定殖的底栖动物主要是集食者,其中优势类群为摇蚊幼虫,占底栖动物个体总数的99%。摇蚊种群在网袋中的数量波动对2种树叶分解速率的影响并不明显。结果表明,受酸性矿山废水的影响,底栖动物群落的多样性大为减少。同时由于各种金属氧化物在树叶表面的不断沉淀,使树叶处于缺氧状态,抑制了微生物的活动,导致树叶分解速率大为降低。  相似文献   

7.
1. Using degree‐days to calculate ‘temperature‐corrected’ breakdown rates is a useful approach for comparing litter breakdown across sites with different thermal regimes. We used an alternative approach to investigate the importance of temperature by quantifying seasonal patterns in litter breakdown in an arctic spring‐fed stream (Ivishak Spring, North Slope, Alaska) that experiences extreme seasonality in light availability and energy inputs while fluctuations in water temperature are relatively small. 2. We incubated mesh bags of senesced Salix alaxensis litter in Ivishak Spring for successive c. 30‐day periods for 2 years. During our study, water temperature was very stable [5.7 ± 0.03 °C (daily mean ± 1 SE), range 3.7–7.8 °C]. Discharge was only slightly more variable (mean 112 ± 1 L s?1, range 66–206 L s?1), with lowest values occurring in late winter. Dissolved nutrient concentrations were low (52–133 μg L?1, <1–3 μg L?1, <1–6 μg L?1 soluble reactive phosphorus) and also showed evidence of seasonality (i.e. highest values in winter). 3. Litter breakdown rates were sharply seasonal, ranging from <0.01 day?1 in mid‐summer to >0.05 day?1 in mid‐winter. Invertebrate assemblage structure in litter bags showed pronounced seasonal cyclicity; total invertebrate biomass peaked in summer. Biomass of two dominant shredders (the nemourid stonefly Zapada haysi and the limnephilid caddisfly Ecclisomyia conspersa) showed the opposite trend, however, with mid‐winter peaks in both population biomass and cohort growth rates that closely matched those we observed in litter mass loss. 4. Water temperature appeared to have negligible influence on litter breakdown rates in our study. Seasonal shifts in nutrient uptake may have increased rates of microbial activity in winter. The processing of litter inputs in Ivishak Spring, however, appeared to be most tightly coupled to shredder phenology. Our results demonstrate that extreme seasonality in the processing of allochthonous detritus can occur even in the absence of substantial temperature variation, driven by the activity of shredder taxa that have evolved to take advantage of pulsed organic matter inputs.  相似文献   

8.
Invasion by exotic trees into riparian areas has the potential to impact terrestrial and aquatic systems. To test the effect of different streamside tree species on the aquatic food web in a stream in Montana, we compared decomposition rates of leaf litter and invertebrate assemblages associated with the leaf litter of the exotic Acer platanoides and the dominant native Populus trichocarpa trees. Macroinvertebrate family richness, evenness, and diversity increased with days of aquatic processing; however, there was no effect of leaf species. Leaves of the A. platanoides were associated with 70% greater density of macroinvertebrates of the family Nemouridae. This family consists primarily of detritivores and had the greatest overall density and frequency of occurrence relative to other macroinvertebrate families. The density of a family of predatory macroinvertebrates (Rhyacophilidae) was also generally (73%) greater in association with A. platanoides than P. trichocarpa leaves. The density of Ephemerellidae and Rhyacophilidae increased over time. In contrast to studies comparing leaves of exotic vs. native trees, we observed no difference in leaf decomposition rates; however, the amount of leaf inputs are likely to differ between native and invaded forests. The results indicate that replacement of native riparian trees with exotics affected the most common family of macroinvertebrates and possibly a common family of predatory macroinvertebrates (Rhyacophilidae), which may affect the detrital food web.  相似文献   

9.
10.
1. We examined the relative importance of litter quality and stream characteristics in determining decomposition rate and the macroinvertebrate assemblage living on autumn‐shed leaves. 2. We compared the decomposition rates of five native riparian tree species (Populus fremontii, Alnus oblongifolia, Platanus wrightii, Fraxinus velutina and Quercus gambelii) across three south‐western streams in the Verde River catchment (Arizona, U.S.A.). We also compared the decomposition of three‐ and five‐species mixtures to that of single species to test whether plant species diversity affects rate. 3. Decomposition rate was affected by both litter quality and stream. However, litter quality accounted for most of the variation in decomposition rates. The relative importance of litter quality decreased through time, explaining 97% of the variation in the first week but only 45% by week 8. We also found that leaf mixtures decomposed more quickly than expected, when all the species included were highly labile or when the stream environment led to relatively fast decomposition. 4. In contrast to decomposition rate, differences in the invertebrate assemblage were more pronounced across streams than across leaf litter species within a stream. We also found significant differences between the invertebrate assemblage colonising leaf mixtures compared with that colonising pure species litter, indicating non‐additive properties of litter diversity on stream invertebrates. 5. This study shows that leaf litter diversity has the capacity to affect in‐stream decomposition rates and stream invertebrates, but that these effects depend on both litter quality and stream characteristics.  相似文献   

11.
In Central Europe climate change will increase summer droughts, which cause both, premature leaf fall and fragmentation of small streams during summer and early autumn. As a consequence dissolved organic carbon (DOC) leached from leaves will be dispersed into pools with long water residence time. A microcosm experiment was performed to test the effect of high concentrations of leachate DOC and the relative importance of labile and refractory leachate compounds on leaf associated microbial parameters. In microcosms leaf discs colonized in a stream were exposed to high concentrations of either leaf leachate, glucose or tannic acid. Leaf associated respiration, fungal sporulation, leaf mass loss and fungal biomass (ergosterol) were measured during a 3 weeks experimental period and compared to control without DOC amendment. The results imply that depending on source and composition elevated leachate DOC may have variable effects on microbial mediated litter decomposition. Our findings suggest reduced microbial decomposition rates in pools of fragmented streams receiving premature leaf fall. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Most bioassessment programs in Brazil face difficulties when scaling up from small spatial scales because larger scales usually encompass great environmental variability. Covariance of anthropogenic pressures with natural environmental gradients can be a confounding factor in the evaluation of biologic responses to anthropogenic pressures. The objective of this study was to develop a multimetric index (MMI) with macroinvertebrates for two stream types and two ecoregions in the Atlantic Forest biome in Rio de Janeiro state, Brazil. We hypothesized that by using two approaches – (1) testing and adjusting metrics to landscape parameters, and (2) selecting metrics using a cluster analysis to avoid metrics redundancy – the final MMI would perform better than the traditional approach (unadjusted metrics, one metric representing each category). Four MMIs were thus developed: MMI-1 – adjusted MMI with metrics selected after cluster analysis); MMI-2 – adjusted MMI with one metric from each category; MMI-3 – unadjusted MMI with metrics selected after cluster analysis; MMI-4 – unadjusted MMI with one metric from each category. We used three decision criteria to assess MMI’s performance: precision, responsiveness and sensitivity. In addition, we tested the MMI’s by using an independent set of sites to validate the results. Although all MMIs performed well in the three criteria, adjusting metrics to natural variation increased MMI response and sensitivity to impairment. In addition, the selected MMI-2 was able to classify sites of two stream types and two ecoregions. The use of cluster analysis, however, did not avoid high redundancy between metrics of different branches. The MMI-4 had the poorest performance among all tested MMIs and it was not able to distinguish adequately reference and impaired sites from both ecoregions. We present some considerations on the use of metrics and on the development of MMI’s in Brazil and elsewhere.  相似文献   

13.
We determined the impact of the invasive herb, Tradescantia fluminensis Vell., on litter decomposition and nutrient availability in a remnant of New Zealand lowland podocarp–broadleaf forest. Using litter bags, we found that litter beneath mats of Tradescantia decomposed at almost twice the rate of litter placed outside the mat. Values of k (decomposition quotient) were 9.44±0.42 yrs for litter placed beneath Tradescantia and 5.42±0.42 yrs for litter placed in native, non-Tradescantia plots. The impact of Tradescantia on decomposition was evident through the smaller forest floor mass in Tradescantia plots (2.65±1.05 t ha−1) compared with non-Tradescantia plots (5.05±1.05 t ha−1), despite similar quantities of annual leaf litterfall into Tradescantia plots (6.85±0.85 t ha−1 yr−1) and non-Tradescantia plots (7.45±1.05 t ha−1 yr−1). Moreover, there was increased plant nitrate available, as captured on resin bags, in Tradescantia plots (25.77 ± 8.32 cmol(−)/kg resin) compared with non-Tradescantia plots (9.55±3.72 cmol(−)/kg resin). Finally, the annual nutrient uptake by Tradescantia represented a large proportion of nutrients in litterfall (41% N, 61% P, 23% Ca, 46% Mg and 83% K), exceeded the nutrient content of the forest floor (except Ca), but was a small proportion of the topsoil nutrient pools. Taken together, our results show that Tradescantia increases litter decomposition and alters nutrient availability, effects that could influence the long-term viability of the majority of podocarp–broadleaf forest remnants affected with Tradescantia in New Zealand. These impacts are likely mostly due to Tradescantia's vegetation structure (i.e., tall, dense mats) and associated microclimate, compared with native ground covers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
1. We investigated the effects of two features of leaf‐pack habitat structure (i.e. mass of a leaf pack and surface area of leaves comprising a leaf pack) and fish predation on colonisation of shredders and leaf breakdown rates in a coldwater stream. Packs were constructed of red maple (Acer rubrum) leaves. 2. A 2 × 3 × 3 factorial experiment was used to manipulate fish predation (exclusion and control cage), leaf‐pack mass (1, 3 and 5 g dry mass) and leaf surface area (small: approx. 17.9 cm2, medium: approx. 34.6 cm2, large: approx. 65.6 cm2). Exclusion cages had mesh on all sides, whereas control cages lacked mesh on two sides to provide access to fish. 3. Common shredders were Gammarus pseudolimnaeus, Pycnopsyche and Lepidostoma. Shredder biomass per leaf pack increased with the mass of a leaf pack (P < 0.001), but biomass per unit mass of leaf pack did not differ with leaf‐pack mass (P = 0.506). Shredder densities did not respond to the exclusion of fish (P > 0.7) or leaf surface area (P > 0.7), and interactions among treatment factors were not significant (P > 0.2). 4. Breakdown rates were lower for leaf packs comprised of small leaves (P < 0.001) and leaf packs with high mass (P = 0.001). Excluding fish did not significantly affect leaf breakdown rates (P = 0.293), and interactions among treatment factors were not significant (P > 0.3). Breakdown rates were highest when packs consisted of few leaves (i.e. leaf packs with large leaves and low mass) and were colonised by many shredders. 5. Fish predation was not an important factor controlling shredder densities in leaf packs over the spatiotemporal scale of our experiment. Nevertheless, we found shredder colonisation was proportional to leaf‐pack mass and breakdown rates were affected by leaf‐pack size (i.e. number of leaves in a pack). We suspect that fragmentation is the primary mechanism causing the breakdown rates to be dependent on leaf‐pack size.  相似文献   

15.
Aquatic hyphomycetes are microbial decomposers in freshwater environments that, together with detritivores, play an essential role in the functioning of low-order streams. Here, we evaluated aquatic hyphomycetes communities associated with decomposing leaves of Nectandra megapotamica, a common Neotropical riparian tree, along a subtropical-tropical latitudinal gradient. Two forest streams located in subtropical regions and 3 in tropical regions were selected. We identified 29 species of aquatic hyphomycetes, 22 (75.8%) in subtropical streams and 15 (51.7%) in tropical streams. We also found a higher fungal biomass in subtropical streams. However, the amounts of leaf mass loss did not differ between regions, but the values were higher in summer than in winter. High temperature, pH and electrical conductivity values, as well as low dissolved oxygen levels, negatively affected spore production. These results suggest that the subtropical-tropical gradient is an important predictor of aquatic hyphomycete diversity; however, the observed species had different sensitivities to local environmental factors.  相似文献   

16.
1. Aquatic hyphomycetes are an important component of detritus processing in streams. Their response to enhanced stream retentiveness was tested by manipulating three streams located in Kielder Forest (northern England), a large plantation of exotic conifers, and two streams in Montagne Noire (south-west France) dominated by native broadleaf woodland. Treatment was by placement of logs or plastic litter traps into a 10–20 m stream section. Fungal spores were collected from stream water upstream and downstream of the treated sections over 1–2 years.
2. The average concentration of fungal spores in reference sections was nearly 10× greater in the French streams than in the English streams. The number of hyphomycete species was also higher in the French streams. These differences between regions were probably a consequence of the much lower standing stock and diversity of leaf litter in the English streams.
3. Despite these large regional differences, the treatment had a clear effect in all streams. Detrital standing stocks were enhanced in treated sections by up to 90% in French streams and 70% in English streams.
4. Mean spore density below treated sections increased by 1.8–14.8% in French streams and 10.2–28.9% in the naturally less retentive English streams. The number of fungal species increased significantly below the treated sections of the English streams, although not the French ones.
5. In biologically impoverished plantation streams, input of woody debris can increase detritus retention and enhance hyphomycete diversity and productivity. This may have consequent benefits for detritus processing and macroinvertebrate production.  相似文献   

17.
Here we report on the results of a survey of the yeast populations occurring on submerged leaves (alder, eucalyptus and oak) in a natural mountain stream, during different phases of their decomposition and through two consecutive years. Leaf litter mass loss, total yeast counts, Shannon-Weiner index (H'), yeast community structure and physiologic abilities were analyzed to evaluate the dynamics of yeast communities during decay. Seventy-two yeast taxa were recorded, and in all litter types, species of basidiomycetous affinity predominated over ascomycetous ones. Discriminant analysis of presence/absence data (yeast species) showed significant differences both among substrate types (P<0.0026) and with decomposition time (P<0.0001). Carbon and nitrogen source utilization by yeast strains also varied with the substrate (P<0.0001) and decomposition time (P<0.0001). Further conclusions were that: (1) all litter types have in common ubiquitous yeast species, such as Cryptococcus albidus, Debaryomyces hansenii and Rhodotorula glutinis, among the common 20 yeast species; (2) only a few species were dominant, and most species were rare, being recorded once or twice throughout decomposition; and (3) the order of yeast appearance, and their substrate assimilation patterns, strongly suggest a succession phenomenon. Finally, explanations for the distribution patterns and variations in yeast communities are discussed.  相似文献   

18.
1. Scant information is available on leaf breakdown in streams of arid and semiarid regions, including the Mediterranean, where environmental heterogeneity can be high and the relationship between stream characteristics and leaf breakdown is poorly known. We tested the hypotheses that differences in leaf breakdown metrics would be substantially higher between mountain and lowland Mediterranean streams than among streams within each subregion and that variability among streams would be substantially higher in the lowlands, because permanent reaches in the semiarid lowland streams are rare and isolated. 2. We compared leaf breakdown and associated dynamics of nutrients, fungi and invertebrates in low‐order Mediterranean streams draining sub‐humid forests in the Sierra Nevada Mountains and nearby semiarid lowlands of south‐eastern Spain. Streams differed between the two subregions mainly in water ion content, temperature and riparian tree cover. We detected higher environmental heterogeneity among streams within the lowlands compared to the Sierra Nevada mountain range. In the lowlands, breakdown coefficients (k) of alder leaves spanned almost the entire range reported for this species from temperate streams, overlapping with less variable breakdown coefficients in the Sierra Nevada. 3. The high variability of k values among the lowland sites appeared to be caused primarily by variability in the composition and abundance of a few leaf‐consuming invertebrate taxa, particularly the snail Melanopsis praemorsa. Fungal and nutrient dynamics were less variable among sites within each subregion. 4. These results indicate that the critical condition for stream functional assessment of well‐constrained breakdown rates, or related metrics, could be met at reference sites within homogenous bio‐geo‐climatic regions such as the Sierra Nevada. By contrast, in heterogeneous areas such as the semiarid lowland streams, natural variability of breakdown rates can greatly exceed the magnitude of effects expected in response to anthropogenic disturbances.  相似文献   

19.
López  Eva S.  Pardo  Isabel  Felpeto  Nuria 《Hydrobiologia》2001,464(1-3):51-61
Litter processing was examined in autumn–winter and spring–summer in a second order stream in Galicia (NW Spain). We compared decay rate and nutrient dynamics of green leaves of several deciduous (riparian: Alnus glutinosa, Betula alba and Populus×canadensis; terrestrial: Castanea sativa, Quercus robur), and evergreen tree species (terrestrial: Pinus radiata and Eucalyptus nitens), in addition to ray-grass (Lolium perenne). In the autumn–winter period, the decay rates (–k) ranged between 0.0086 degree-days–1 for poplar, and 0.0019 degree-days–1 for birch leaves. Alder showed the most rapid breakdown in spring–summer (0.0124 degree-days–1), and pine the slowest (0.0016 degree-days–1). Deciduous species exhibited general higher processing rates than evergreen species and ray-grass. The initial nitrogen and phosphorus contents were higher in riparian species leaves and ray-grass, being higher in spring (2.28±0.14% and 0.24±0.04% of nitrogen and phosphorus, respectively) than in autumn (1.88±0.36% of nitrogen and 0.18±0.03% of phosphorus). A significant correlation coefficient was found only between mean nitrogen leaf packs contents during incubation and decay rates (r=0.61; p=0.012).In deciduous species, processing was faster during the spring–summer than in the autumn–winter period, which may be attributed to the greater nutritional value and less consistency of the leaves during this season. Within evergreen species, pine had a significantly faster processing rate in autumn, attributed in this study to greater physical fragmentation of the needles. Ray-grass and eucalyptus did not exhibit any seasonal differences in processing rate.During the spring–summer period, litterfall inputs are quantitatively less important than during the autumn–winter, but due to high retention and fast breakdown during the spring–summer, green inputs should contribute substantially to nutrient incorporation and cycling in benthic communities.  相似文献   

20.
Understanding the spatial variability in plant litter processes is essential for accurate comprehension of biogeochemical cycles and ecosystem function. We assessed spatial patterns in litter processes from local to regional scales, at sites throughout the wet tropical rain forests of northern Australia. We aimed to determine the controls (e.g., climate, soil, plant community composition) on annual litter standing crop, annual litterfall rate and in situ leaf litter decomposability. The level of spatial variance in these components, and leaf litter N, P, Ca, lignin, α‐cellulose and total phenolics, was determined from within the scale of subregion, to site (1 km transects) to local/plot (~30 m2). Overall, standing crop was modeled with litterfall and its chemical composition, in situ decomposability, soil Na, and topography (r= 0.69, 36 plots). Litterfall was most closely aligned with plant species richness and stem density (negative correlation); leaf decomposability with leaf‐P and lignin, soil Na, and dry season moisture (r= 0.89, 40 plots). The predominant scale of variability in litterfall rates was local (plot), while litter standing crop and α‐cellulose variability was more evenly distributed across spatial scales. Litter decomposability, N, P and phenolics were more aligned with subregional differences. Leaf litter C, lignin and Ca varied most at the site level, suggesting more local controls. We show that variability in litter quality and decomposability are more easily accounted for spatially than litterfall rates, which vary widely over short distances possibly in response to idiosyncratic patterns of disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号