首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Climate change will promote substantial effects on the distribution of invasive species. Here, I used an ensemble of bioclimatic envelope models (Gower Distance, Chebyshev Distance, and Mahalanobis Distance) to forecast climatically suitable areas of South America for 13 invasive African grass species under future climate conditions (year 2050). Under current climatic conditions, the areas with the potential for the highest invasive species richness are located mostly in the tropical climates of South America, except for the Amazon region. In the year 2050, the overall pattern of invasive species richness will not change considerably, and increases in northeastern Amazon and portions of the temperate regions of South America are predicted.  相似文献   

2.
Ecological niche models, or species distribution models, have been widely used to identify potentially suitable areas for species in future climate change scenarios. However, there are inherent errors to these models due to their inability to evaluate species occurrence influenced by non‐climatic factors. With the intuit to improve the modelling predictions for a bromeliad‐breeding treefrog (Phyllodytes melanomystax, Hylidae), we investigate how the climatic suitability of bromeliads influences the distribution model for the treefrog in the context of baseline and 2050 climate change scenarios. We used point occurrence data on the frog and the bromeliad (Vriesea procera, Bromeliaceae) to generate their predicted distributions based on baseline and 2050 climates. Using a consensus of five algorithms, we compared the accuracy of the models and the geographic predictions for the frog generated from two modelling procedures: (i) a climate‐only model for P. melanomystax and V. procera; and (ii) a climate‐biotic model for P. melanomystax, in which the climatic suitability of the bromeliad was jointly considered with the climatic variables. Both modelling approaches generated strong and similar predictive power for P. melanomystax, yet climate‐biotic modelling generated more concise predictions, particularly for the year 2050. Specifically, because the predicted area of the bromeliad overlaps with the predictions for the treefrog in the baseline climate, both modelling approaches produce reasonable similar predicted areas for the anuran. Alternatively, due to the predicted loss of northern climatically suitable areas for the bromeliad by 2050, only the climate‐biotic models provide evidence that northern populations of P. melanomystax will likely be negatively affected by 2050.  相似文献   

3.
Naturalised, but not yet invasive plants, pose a nascent threat to biodiversity. As climate regimes continue to change, it is likely that a new suite of invaders will emerge from the established pool of naturalised plants. Pre-emptive management of locations that may be most suitable for a large number of potentially invasive plants will help to target monitoring, and is vital for effective control. We used species distribution models (SDM) and invasion-hotspot analysis to determine where in Australia suitable habitat may occur for 292 naturalised plants. SDMs were built in MaxEnt using both climate and soil variables for current baseline conditions. Modelled relationships were projected onto two Representative Concentration Pathways for future climates (RCP 4.5 and 8.5), based on seven global climate models, for two time periods (2035, 2065). Model outputs for each of the 292 species were then aggregated into single ‘hotspot’ maps at two scales: continental, and for each of Australia’s 37 ecoregions. Across Australia, areas in the south-east and south-west corners of the continent were identified as potential hotspots for naturalised plants under current and future climates. These regions provided suitable habitat for 288 and 239 species respectively under baseline climates. The areal extent of the continental hotspot was projected to decrease by 8.8% under climates for 2035, and by a further 5.2% by 2065. A similar pattern of hotspot contraction under future climates was seen for the majority of ecoregions examined. However, two ecoregions - Tasmanian temperate forests and Australian Alps montane grasslands - showed increases in the areal extent of hotspots of >45% under climate scenarios for 2065. The alpine ecoregion also had an increase in the number of naturalised plant species with abiotically suitable habitat under future climate scenarios, indicating that this area may be particularly vulnerable to future incursions by naturalised plants.  相似文献   

4.
This study assessed potential changes in the distributions of Australian butterfly species in response to global warming. The bioclimatic program, BIOCLIM, was used to determine the current climatic ranges of 77 butterfly species restricted to Australia. We found that the majority of these species had fairly wide climatic ranges in comparison to other taxa, with only 8% of butterfly species having a mean annual temperature range spanning less than 3 °C. The potential changes in the distributions of 24 butterfly species under four climate change scenarios for 2050 were also modelled using BIOCLIM. Results suggested that even species with currently wide climatic ranges may still be vulnerable to climate change; under a very conservative climate change scenario (with a temperature increase of 0.8–1.4 °C by 2050) 88% of species distributions decreased, and 54% of species distributions decreased by at least 20%. Under an extreme scenario (temperature increase of 2.1–3.9 °C by 2050) 92% of species distributions decreased, and 83% of species distributions decreased by at least 50%. Furthermore, the proportion of the current range that was contained within the predicted range decreased from an average of 63% under a very conservative scenario to less than 22% under the most extreme scenario. By assessing the climatic ranges that species are currently exposed to, the extent of potential changes in distributions in response to climate change and details of their life histories, we identified species whose characteristics may make them particularly vulnerable to climate change in the future.  相似文献   

5.
Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human‐made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species‐rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.  相似文献   

6.
Climate change is causing many irreversible changes in the Himalayan ecosystems. In this study, an attempt was made to understand the ecological response of medicinal plant species to changing climate conditions in the Sikkim Himalaya, a part of the Eastern Himalayan biodiversity hotspot. Maximum Entropy Species Distribution Modelling (SDM) approach was used to analyze the potential habitat distribution of 163 medicinal plant species in current and future climates (2050, 2070). An attempt was also made to identify the most suitable areas for conservation and test the effectiveness of the existing Protected Area (PA) network in conserving medicinal plant species in current and future climate scenarios through the Habitat Suitability and Overlap Analyses. SDM analyses revealed that the majority of the medicinal plant species are found in the tropical and sub-tropical regions in the Sikkim Himalaya (300–2000 m) at present. In future climates, however, most of the species are likely to show an upward and northward shift in their distributions. Maximum species-rich regions are likely to shift by 200 m and 400 m in 2050 and 2070, respectively. A total of 13–16% of medicinal plant species currently found in the region are likely to lose their existing potential habitats by 2050 and 2070. The results highlight that species that are restricted to specific localities and have a narrow elevational distribution are the most vulnerable species and likely to go extinct due to climate change in the Himalaya. Habitat suitability analyses indicated that elevations ranging from 860 to 2937 m serve as highly suitable habitats for medicinal plant species in Sikkim Himalaya. Consequently, these areas can be focused for conservation actions in order to mitigate the effect of climate change. The results of Overlap Analysis indicated that out of 8 PAs in Sikkim Himalaya, only 5 PAs are effective in the conservation of medicinal plant species in current and future climates. The boundaries of existing PAs need to be expanded in order to accommodate the upward shifts in the spatial distribution of species, especially in the case of those PAs that are located in the lower elevations or tropical regions. This study provides a novel integrated framework for use of ecological informatics in assessing the species vulnerability to climate change and planning conservation priorities.  相似文献   

7.
Correlative species distribution models are based on the observed relationship between species’ occurrence and macroclimate or other environmental variables. In climates predicted less favourable populations are expected to decline, and in favourable climates they are expected to persist. However, little comparative empirical support exists for a relationship between predicted climate suitability and population performance. We found that the performance of 93 populations of 34 plant species worldwide – as measured by in situ population growth rate, its temporal variation and extinction risk – was not correlated with climate suitability. However, correlations of demographic processes underpinning population performance with climate suitability indicated both resistance and vulnerability pathways of population responses to climate: in less suitable climates, plants experienced greater retrogression (resistance pathway) and greater variability in some demographic rates (vulnerability pathway). While a range of demographic strategies occur within species’ climatic niches, demographic strategies are more constrained in climates predicted to be less suitable.  相似文献   

8.
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.  相似文献   

9.
Aim Our aims were (1) to compare observed, estimated and predicted patterns of species richness using the Australian native Asteraceae as an example, (2) to identify candidates for hotspots of diversity for the study group, and (3) to examine the distortion of our perception of the spatial distribution of species richness through uneven or misdirected sampling efforts. Location Australia. Methods Based on data from Australia’s Virtual Herbarium, we calculated and visualized observed species richness, the Chao1 estimate of richness, the C index of collecting completeness, and an estimate of richness derived from environmental niche modelling for grid cells at a resolution of 1°. The 20 cells with the highest diversity values were used to define hotspots of diversity. Results Uneven collecting activity results in misleading diversity patterns for the family Asteraceae. While observed species richness is much higher in central Australia than in other parts of the arid interior, this is an artefact resulting from the area being a hotspot of collecting activity. The mountain ranges of south‐eastern Australia and Tasmania are candidates for unbiased hotspots of species richness. Main conclusions Vast areas of the Australian interior are insufficiently sampled on a local scale, although most of them can be expected to be relatively species poor. Some areas in the south‐east and south‐west of the continent remain undersampled relative to their high species richness. Observed species numbers, estimators and environmental niche‐modelling all have their unique advantages and disadvantages for the inference of patterns of diversity.  相似文献   

10.
Biological invasions are a primary threat to global biodiversity, supporting mounting calls for the development of early‐warning systems to manage existing and emerging invaders. Here, we evaluated the geographical pattern of invasion risks of currently established and potentially emerging nonnative freshwater fishes in China by jointly considering the threats of introduction and establishment under climate change. Introduction threats were estimated according to proxies of human activities and propagule pressure for two primary pathways (aquaculture or ornamental). Establishment threats for 51 current and 64 potential invaders (based on whether having established or not self‐sustaining populations) were assessed using an ensemble of species distribution models under current (1960–1990) and future [2041–2060 (2050s) and 2061–2080 (2070s)] climate scenarios. Geographical patterns of invasion risk were then assessed by overlaying the threats of introduction and establishment for each species group both in present‐day and in the future. We found that eastern China displayed the highest threat of introduction. By contrast, southeastern and northwestern regions were identified as the most suitable for the establishment of both current and potential invaders. Under a changing climate, 83 out of 115 species displayed an increase in habitat suitability, resulting in an overall increase of 4.8% by 2050s and 7.1% by 2070s in the extent of suitable habitat for nonnative freshwater fishes. Taken together, invasion risk was found to be highest in southeastern China and lowest in the Tibet Plateau. Our research highlights the importance of assessing invasion risk by integrating the threats associated with the introduction and establishment stages. In particular, our findings revealed convergent patterns of invasion risk between current and potential nonnative freshwater fishes under climate change. Geographic patterns in hotspots of existing and emerging invasions provide critical insights to guide the allocation of resources to monitor and control existing and emerging invasions in China.  相似文献   

11.
1 The potential risk of the establishment of the Asian strain of the gypsy moth (AGM) (Lymantria dispar) in New Zealand and Australia (Australasia) was assessed from a study of the insect's host range and potential distribution. In New Zealand, viable eggs of AGM have been continuously intercepted on cargo from Asia, and therefore there is a high probability of accidental introductions of AGM to Australasia. 2 We predicted potential distribution ranges of AGM based on climatic conditions. Asian gypsy moth is predicted to be able to persist in N and SE New Zealand and SE and SW Australia. 3 Using three populations of AGM and 59 species (seven families) of plant (55 from Australasia and four from elsewhere), we also conducted laboratory trials to examine the ability of AGM larvae to complete development on native plants from Australasia. Asian gypsy moth was able to complete development on 26 out of the 55 native species tested. Furthermore, larval performance on at least five species of Australian native plant was as good as on AGM's preferred host species (Quercus pubescens and Q. robur). 4 Larval performance of AGM was poor on all but one species of New Zealand native tree species (Nothofagus solandri), and therefore the risk of establishment in the indigenous forests of New Zealand is considered to be low. 5 Given the suitability of some Australian plants and the climatic suitability for the establishment of AGM, this insect should be treated as a serious quarantine threat and managed accordingly, particularly in Australia.  相似文献   

12.
Determining the spread and potential geographical distribution of invasive species is integral to making invasion biology a predictive science. We assembled a dataset of over 1000 occurrences of the Argentine ant (Linepithema humile), one of the world's worst invasive alien species. Native to central South America, Argentine ants are now found in many Mediterranean and subtropical climates around the world. We used this dataset to assess the species' potential geographical and ecological distribution, and to examine changes in its distributional potential associated with global climate change, using techniques for ecological niche modelling. Models developed were highly predictive of the species' overall range, including both the native distributional area and invaded areas worldwide. Despite its already widespread occurrence, L. humile has potential for further spread, with tropical coastal Africa and southeast Asia apparently vulnerable to invasion. Projecting ecological niche models onto four general circulation model scenarios of future (2050s) climates provided scenarios of the species' potential for distributional expansion with warming climates: generally, the species was predicted to retract its range in tropical regions, but to expand at higher latitude areas.  相似文献   

13.
The warmer and drier climates projected for the mid‐ to late‐21st century may have particularly adverse impacts on the cool temperate rainforests of southeastern Australia. Southern beech (Nothofagus cunninghamii; Nothofagaceae), a dominant tree species in these forests, may be vulnerable to minor changes in its climate envelope, especially at the edge of the species range, with Holocene fossil evidence showing local extinction of populations in response to small climate changes. We modelled the stability of this species climate envelope using the maximum entropy algorithm implemented in Maxent and two thresholds of presence/absence by projecting the modern climate envelope onto four Global Circulation Models forecasted for two time periods (2050s and 2070s). The climate envelope, as estimated from the species present climatic range, is predicted to shrink by up to 49% by the 2050s and up to 64% by the 2070s. The greatest predicted reduction is in Victoria with 91–100% of its current range being climatically unsuitable by the 2070s. Climatically similar areas to the species present range are predicted to remain in mountainous areas of western Tasmania, the Northeast Highlands of Tasmania, and the Baw Baw Plateau in the Central Highlands of Victoria. However, region‐specific modelling approaches made very different predictions from the whole‐range based models, especially in the severity of the predicted decline for Victorian populations of N. cunninghamii which occur in much warmer climates than the rest of the species geographical range. This shows that, for widespread species that span a range of climate zones, the exposure of current populations to climate change may be better modelled using a regional based approach. How the species responds to climate change will depend on the species ability to respond to drier and warmer climates and the concomitant increase in fire intensity.  相似文献   

14.
Four North American trees are becoming invasive species in Western Europe: Acer negundo, Prunus serotina, Quercus rubra, and Robinia pseudoacacia. However, their present and future potential risks of invasion have not been yet evaluated. Here, we assess niche shifts between the native and invasive ranges and the potential invasion risk of these four trees in Western Europe. We estimated niche conservatism in a multidimensional climate space using niche overlap Schoener's D, niche equivalence, and niche similarity tests. Niche unfilling and expansion were also estimated in analogous and nonanalogous climates. The capacity for predicting the opposite range between the native and invasive areas (transferability) was estimated by calibrating species distribution models (SDMs) on each range separately. Invasion risk was estimated using SDMs calibrated on both ranges and projected for 2050 climatic conditions. Our results showed that native and invasive niches were not equivalent with low niche overlap for all species. However, significant similarity was found between the invasive and native ranges of Q. rubra and R. pseudoacacia. Niche expansion was lower than 15% for all species, whereas unfilling ranged from 7 to 56% when it was measured using the entire climatic space and between 5 and 38% when it was measured using analogous climate only. Transferability was low for all species. SDMs calibrated over both ranges projected high habitat suitability in Western Europe under current and future climates. Thus, the North American and Western European ranges are not interchangeable irrespective of the studied species, suggesting that other environmental and/or biological characteristics are shaping their invasive niches. The current climatic risk of invasion is especially high for R. pseudoacacia and A. negundo. In the future, the highest risks of invasion for all species are located in Central and Northern Europe, whereas the risk is likely to decrease in the Mediterranean basin.  相似文献   

15.

Aim

We employed a climate-matching method to evaluate potential source regions of freshwater invasive species to an introduced region and their potential secondary spread under historical and future climates.

Location

Global source regions, with primary introductions to the Laurentian Great Lakes and secondary introductions throughout North America.

Methods

We conducted a climate-match analysis using the CLIMATE algorithm to estimate global source freshwater ecoregions under historical and future climates with an ensemble of global climate models for climate-change scenario SSP5-8.5. Given existing research, we use a climate match of ≥71.7% between ecoregions to indicate climatic conditions that will not inhibit the survival of introduced freshwater organisms. Further, we estimate the secondary spread of freshwater invaders to the ecoregions of North America under historical and future climates.

Results

We identified 54 global freshwater ecoregions with a climate match ≥71.7% to the recipient Laurentian Great Lakes under historical climatic conditions, and 11 additional ecoregions were predicted to exceed the threshold under climate change. Three of the 11 ecoregions were located in South America, a continent where no matches existed under historical climates and eight were located in the southern United States, southern Europe, Japan and New Zealand. Further, we identify 34 North American ecoregions of potential secondary spread of freshwater invasions from the Great Lakes under historical climatic conditions, and five ecoregions were predicted to exceed the threshold under climate change.

Main Conclusion

We provide a climate-match method that can be employed to assess the sources and spread of freshwater invasions under historical and future climate scenarios. Our climate-match method predicted increases in climate match between the recipient region and several potential source regions, and changes in areas of potential spread under climate change. The identified ecoregions are candidates for detailed biosecurity risk assessments and related management actions.  相似文献   

16.
Aim To analyse observed and predicted distributional patterns of selected salticid genera in Australia and to examine these distributions in the light of the origins and attributes of the fauna. To detect and compare the locations of regional hotspots when measured using different scales. Location Australia. Methods A total of 4104 locality records for specimens of 51 genera were stored in BioLink. Maps of observed and predicted (using bioclim ) distributions were prepared for each genus. The predicted distributions were combined to provide estimates of the number of genera likely to be found at each locality in the raster and for each of a set of landscape regions across Australia. The predictions were tested by comparing them with independent data sets. Results The Australian salticid fauna consists of radiations based on Oriental, Papuan and possibly Gondwanan forms, plus pantropical and peridomestic species. The predicted distributions of genera fall into a limited number of categories and these reflect the traditional biogeographical regions of Australia. Maximum regional diversity is predicted for central eastern Queensland, though diversity at single locations is highest further south in the New South Wales/Queensland border region. The locations of hotspots are therefore scale dependent. Patterns of distribution are not simply related to particular lifestyles. Fewer genera were predicted from inland Australia; however, recent work has shown that there are a large number of undescribed genera in the drier parts of Australia. The prediction maps allowed lists of genera potentially present in unstudied areas to be developed. Main conclusions (1) The current distribution of genera is predicted by their bioclimatic profiles rather than by their origins or ecology. Some Oriental genera, however, have not reached south‐western Western Australia, though bioclimatic conditions there are predicted to be suitable for them; (2) the highest diversity of genera is predicted to be in south‐eastern Queensland; (3) the results highlight the shortcomings of past fieldwork in Australia, which has concentrated on the areas with higher rainfall; (4) it seems likely that inland Australia will support a large, highly endemic, fauna adapted to the region, and ultimately perhaps 40 or more genera could be found in each region; (5) the results show the possibility of using the maps of predicted distribution of genera not only for biogeographical analyses but also for conservation management and survey purposes.  相似文献   

17.
Climate change presents a new challenge for the management of invasive exotic species that threaten both biodiversity and agricultural productivity. The invasion of exotic perennial grasses throughout the globe is particularly problematic given their impacts on a broad range of native plant communities and livelihoods. As the climate continues to change, pre-emptive long-term management strategies for exotic grasses will become increasingly important. Using species distribution modelling we investigated potential changes to the location of climatically suitable habitat for some exotic perennial grass species currently in Australia, under a range of future climate scenarios for the decade centred around 2050. We focus on eleven species shortlisted or declared as the Weeds of National Significance or Alert List species in Australia, which have also become successful invaders in other parts of the world. Our results indicate that the extent of climatically suitable habitat available for all of the exotic grasses modelled is projected to decrease under climate scenarios for 2050. This reduction is most severe for the three species of Needle Grass (genus Nassella) that currently have infestations in the south-east of the continent. Combined with information on other aspects of establishment risk (e.g. demographic rates, human-use, propagule pressure), predictions of reduced climatic suitability provide justification for re-assessing which weeds are prioritised for intensive management as the climate changes.  相似文献   

18.
As climate changes, tree decline in Mediterranean‐type ecosystems is increasing worldwide, often due to decreased effective precipitation and increased drought and heat stress, and has recently been observed in coastal species of the iconic Eucalyptus (Myrtaceae) genus in the biodiversity hotspot of south‐west Western Australia. To investigate how this drought‐related decline is likely to continue in the future, we used species distribution modelling techniques to generate broad‐scale predictions of future distribution patterns under three distinct projected climate change scenarios. In a moderate climate change scenario, suitable habitat for all species was predicted to decrease by, on average, 73% by the year 2100, with most receding into southern areas of their current distribution. Although the most severe Eucalyptus declines in south‐west Western Australia have been observed in near‐coastal regions, our predictions suggest that inland species are at greater risk from climate change, with six inland species predicted to lose 95% of their suitable habitat in a moderate change scenario. This is due to the shallow environmental gradients of inland regions causing larger spatial shifts of environmental envelopes, which is likely to be relevant in many regions of the world. The knowledge gained suggests that future research and conservation efforts in south‐west Western Australia and elsewhere should avoid focussing disproportionately on coastal regions for reasons of convenience and proximity to population centres, and properly address the inland region where the biggest future impacts may occur.  相似文献   

19.
The risk of aquatic invasions in the Arctic is expected to increase with climate warming, greater shipping activity and resource exploitation in the region. Planktonic and benthic marine aquatic invasive species (AIS) with the greatest potential for invasion and impact in the Canadian Arctic were identified and the 23 riskiest species were modelled to predict their potential spatial distributions at pan‐Arctic and global scales. Modelling was conducted under present environmental conditions and two intermediate future (2050 and 2100) global warming scenarios. Invasion hotspots—regions of the Arctic where habitat is predicted to be suitable for a high number of potential AIS—were located in Hudson Bay, Northern Grand Banks/Labrador, Chukchi/Eastern Bering seas and Barents/White seas, suggesting that these regions could be more vulnerable to invasions. Globally, both benthic and planktonic organisms showed a future poleward shift in suitable habitat. At a pan‐Arctic scale, all organisms showed suitable habitat gains under future conditions. However, at the global scale, habitat loss was predicted in more tropical regions for some taxa, particularly most planktonic species. Results from the present study can help prioritize management efforts in the face of climate change in the Arctic marine ecosystem. Moreover, this particular approach provides information to identify present and future high‐risk areas for AIS in response to global warming.  相似文献   

20.
Global biodiversity hotspots contain exceptional concentrations of endemic species in areas of escalating habitat loss. However, most hotspots are geographically constrained and consequently vulnerable to climate change as there is limited ability for the movement of species to less hostile conditions. Predicted changes to rainfall and temperature will undoubtedly further impact on freshwater ecosystems in these hotspots. Southwestern Australia is a biodiversity hotspot and, as one of the first to experience significant climate change, is an example and potentially a global bellwether for issues associated with river restoration. In this hotspot, current and predicted water temperatures may exceed thermal tolerances of aquatic fauna. Gondwanic aquatic fauna, characteristic of southwestern Australia, are typically cold stenotherms and consequently intolerant of elevated temperatures. The hotspot in southwestern Australia is geographically restricted being surrounded by ocean and desert, and many important national parks are located on the extreme south coast, where the landscape is relatively flat. Consequently, fauna cannot change their distribution southwards or with altitude as a response to increasing temperatures. Therefore, any mitigation responses need to be in situ to produce a suitable biophysical envelope to enhance species' resilience. This could be through “over restoration” by increased riparian replanting at a catchment scale. A rule‐of‐thumb of a 10% increase in riparian cover would be required to reduce water temperatures by 1°C. These restoration techniques are considered applicable to other global biodiversity hotspots where geography constrains species' movement and the present condition is the desired restoration endpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号