首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one‐third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population‐level plant‐plant, plant‐herbivore, and predator‐prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant‐plant), (2) herbivory, neutralism, or mutualism (plant‐herbivore), or (3) neutralism and predation (predator‐prey), as water availability crosses physiological, behavioural, or population‐density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top‐down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems.  相似文献   

2.
  • The impact of global warming on seed dormancy loss and germination was investigated in Alliaria petiolata (garlic mustard), a common woodland/hedgerow plant in Eurasia, considered invasive in North America. Increased temperature may have serious implications, since seeds of this species germinate and emerge at low temperatures early in spring to establish and grow before canopy development of competing species.
  • Dormancy was evaluated in seeds buried in field soils. Seedling emergence was also investigated in the field, and in a thermogradient tunnel under global warming scenarios representing predicted UK air temperatures through to 2080.
  • Dormancy was simple, and its relief required the accumulation of low temperature chilling time. Under a global warming scenario, dormancy relief and seedling emergence declined and seed mortality increased as soil temperature increased along a thermal gradient. Seedling emergence advanced with soil temperature, peaking 8 days earlier under 2080 conditions.
  • The results indicate that as mean temperature increases due to global warming, the chilling requirement for dormancy relief may not be fully satisfied, but seedling emergence will continue from low dormancy seeds in the population. Adaptation resulting from selection of this low dormancy proportion is likely to reduce the overall population chilling requirement. Seedling emergence is also likely to keep pace with the advancement of biological spring, enabling A. petiolata to maintain its strategy of establishment before the woodland canopy closes. However, this potential for adaptation may be countered by increased seed mortality in the seed bank as soils warm.
  相似文献   

3.
Moss-rich terrestrial communities are widely distributed in low- and high-latitude environments, covering vast surface areas in the boreal forests and tundra. The microbial biota in these organic-rich communities may contribute substantially to the carbon budget of terrestrial communities and the carbon cycle on a global scale. Recent research is reported on the carbon content of microbial communities in some temperate and high-latitude moss communities. The total carbon content and potential respiratory carbon dioxide (CO(2)) efflux is reported for bacteria, microflagellates, naked amoebae, and testate amoebae within sampling sites at a northeastern forest and the tundra at Toolik, Alaska. Quantitative models of the predicted total CO(2) efflux from the microbes, based on microscopic observations and enumeration of the microbiota in samples from the research sites, are described and predictions are compared with published field-based data of CO(2) efflux. The significance of the predictions for climate change and global warming are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号