首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA) are the two main homologous recombination (HR) pathways in double‐strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss‐of‐function mutants of rad51 paralogs show increased sensitivity to the DSB‐inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K‐like kinases in wild‐type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K‐like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog‐dependent somatic HR.  相似文献   

2.
Homologous recombination dominates as the major form of DNA repair in Trypanosoma brucei, and is especially important for recombination of the subtelomeric variant surface glycoprotein during antigenic variation. RAD50, a component of the MRN complex (MRE11, RAD50, NBS1), is central to homologous recombination through facilitating resection and governing the DNA damage response. The function of RAD50 in trypanosomes is untested. Here we report that RAD50 and MRE11 are required for RAD51-dependent homologous recombination and phosphorylation of histone H2A following a DNA double strand break (DSB), but neither MRE11 nor RAD50 substantially influence DSB resection at a chromosome-internal locus. In addition, we reveal intrinsic separation-of-function between T. brucei RAD50 and MRE11, with only RAD50 suppressing DSB repair using donors with short stretches of homology at a subtelomeric locus, and only MRE11 directing DSB resection at the same locus. Finally, we show that loss of either MRE11 or RAD50 causes a greater diversity of expressed VSG variants following DSB repair. We conclude that MRN promotes stringent homologous recombination at subtelomeric loci and restrains antigenic variation.  相似文献   

3.
Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNA-damaging agents, we defined the roles of these factors in Arabidopsis. rad5A recq4A and rad5A mus81 double mutants are more sensitive to cross-linking and methylating agents, showing that RAD5A is required for damage-induced DNA repair, independent of MUS81 and RECQ4A. The lethality of the recq4A mus81 double mutant indicates that MUS81 and RECQ4A also define parallel DNA repair pathways. The recq4A/mus81 lethality is suppressed by blocking homologous recombination (HR) through disruption of RAD51C, showing that RECQ4A and MUS81 are required for processing recombination-induced aberrant intermediates during replication. Thus, plants possess at least three different pathways to process DNA repair intermediates. We also examined HR-mediated double-strand break (DSB) repair using recombination substrates with inducible site-specific DSBs: MUS81 and RECQ4A are required for efficient synthesis-dependent strand annealing (SDSA) but only to a small extent for single-strand annealing (SSA). Interestingly, RAD5A plays a significant role in SDSA but not in SSA.  相似文献   

4.
黄敏  杨业然  孙晓艳  张婷  郭彩霞 《遗传》2018,40(11):1007-1014
REV1是跨损伤聚合酶Y家族的重要成员之一,它不仅作为支架蛋白介导Y家族聚合酶招募至损伤位点完成跨损伤DNA合成(translesion DNA synthesis, TLS),还可利用自身的dCMP转移酶活性在一些损伤位点对侧整合dCMP参与TLS。此外,REV1也被报导参与调控同源重组修复。为进一步探讨REV1互作蛋白RAD51和RAD51C在其参与的同源重组修复通路中的调控作用,本研究采用脉冲氮激光微辐射实验,发现RAD51可调控REV1到双链断裂位点的募集。同时,免疫荧光实验结果证明REV1也反过来影响RAD51应答CPT损伤。然而敲低RAD51C并不影响REV1到DNA双链断裂位点的招募。结果表明,REV1和RAD51在HR通路中存在彼此相互调控的关系。  相似文献   

5.
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca2+, a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11.  相似文献   

6.
The role of rice (Oryza sativa) COM1 in meiotic homologous recombination (HR) is well understood, but its part in somatic double‐stranded break (DSB) repair remains unclear. Here, we show that for rice plants COM1 conferred tolerance against DNA damage caused by the chemicals bleomycin and mitomycin C, while the COM1 mutation did not compromise HR efficiencies and HR factor (RAD51 and RAD51 paralogues) localization to irradiation‐induced DSBs. Similar retarded growth at the post‐germination stage was observed in the com1‐2 mre11 double mutant and the mre11 single mutant, while combined mutations in COM1 with the HR pathway gene (RAD51C) or classic non‐homologous end joining (NHEJ) pathway genes (KU70, KU80, and LIG4) caused more phenotypic defects. In response to γ‐irradiation, COM1 was loaded normally onto DSBs in the ku70 mutant, but could not be properly loaded in the MRE11RNAi plant and in the wortmannin‐treated wild‐type plant. Under non‐irradiated conditions, more DSB sites were occupied by factors (MRE11, COM1, and LIG4) than RAD51 paralogues (RAD51B, RAD51C, and XRCC3) in the nucleus of wild‐type; protein loading of COM1 and XRCC3 was increased in the ku70 mutant. Therefore, quite differently to its role for HR in meiocytes, rice COM1 specifically acts in an alternative NHEJ pathway in somatic cells, based on the Mre11–Rad50–Nbs1 (MRN) complex and facilitated by PI3K‐like kinases. NHEJ factors, not HR factors, preferentially load onto endogenous DSBs, with KU70 restricting DSB localization of COM1 and XRCC3 in plant somatic cells.  相似文献   

7.
Eukaryotic meiotic recombination requires numerous biochemical processes, including break initiation, end resection, strand invasion and heteroduplex formation, and, finally, crossover resolution. In this review, we discuss primarily those proteins involved in the initial stages of homologous recombination, including SPO11, MRE11, RAD50, NBS1, DMC1, RAD51, RAD51 paralogs, RAD52, RPA, RAD54, and RAD54B. Focusing on the mouse as a model organism, we discuss what is known about the conserved roles of these proteins in vertebrate somatic cells and in mammalian meiosis. We consider such information as gene expression in gonadal tissue, protein localization patterns on chromosomal cores in meiocyte nuclei, and information gleaned from mouse models.  相似文献   

8.
DNA双链断裂(double strand breaks, DSBs)对细胞生存是致命的.细胞内非同源末端连接(NHEJ)、重组修复(HDR)、单链退火修复(SSA)和微同源序列末端连接(MMEJ)等通路可竞争性修复DNA双链断裂损伤.在肿瘤细胞DNA中制造难以修复的基因损伤,诱导肿瘤细胞周期中止、坏死和凋亡是临床放、化疗的主要策略.组蛋白去乙酰化酶(histone deacetylase)作为抗肿瘤治疗的新靶标,其抑制剂(histonedeacetylase inhibitors, HDACi)可显著降低肿瘤细胞DSBs修复能力,增强肿瘤细胞的放、化疗敏感性.研究显示,HDACi抑制了肿瘤细胞中具有正确修复倾向的HDR和经典NHEJ通路,具有错误修复倾向的SSA和MMEJ路径也可能牵涉其中.目前,HDACi作用于DSBs修复通路的分子机制已取得较大进展,但仍有许多问题有待阐明.  相似文献   

9.
In human cells, error-free repair of DNA double-strand breaks requires the DNA pairing and strand exchange activities of RAD51 recombinase. Activation of RAD51 recombination activities requires the assembly of RAD51 presynaptic filaments on the single-stranded DNA that forms at resected DSB ends. Mutations in proteins that control presynaptic filament assembly, such as BRCA2, and in RAD51 itself, are associated with human breast cancer. Here we describe the properties of two mutations in RAD51 protein that derive from human lung and kidney tumors, respectively. Sequence variants Q268P and Q272L both map to the DNA binding loop 2 (L2) region of RAD51, a motif that is involved in DNA binding and in the allosteric activation of ATP hydrolysis and DNA strand exchange activities. Both mutations alter the thermal stability, DNA binding, and ATPase properties of RAD51, however both variants retain intrinsic DNA strand exchange activity towards oligonucleotide substrates under optimized conditions. In contrast, both Q268P and Q272L variants exhibit drastically reduced DNA strand exchange activity in reaction mixtures containing long homologous ssDNA and dsDNA substrates and human RPA protein. Mixtures of wild-type and variant proteins also exhibit reduced DNA strand exchange activity, suggesting that heterozygous mutations could negatively affect DNA recombination and repair processes in vivo. Together, the findings of this study suggest that hypomorphic missense mutations in RAD51 protein could be drivers of genomic instability in cancer cells, and thereby contribute to the etiology of metastatic disease.  相似文献   

10.
McVey M  Radut D  Sekelsky JJ 《Genetics》2004,168(4):2067-2076
Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA requires strand invasion mediated by DmRad51, the product of the spn-A gene. In spn-A mutants, repair proceeds through a nonconservative pathway involving the annealing of microhomologies found within the 17-nt overhangs produced by P excision. We report here that end joining of P-element breaks in the absence of DmRad51 does not require Drosophila LIG4. In wild-type flies, SDSA is sometimes incomplete, and repair is finished by an end-joining pathway that also appears to be independent of LIG4. Loss of LIG4 does not increase sensitivity to ionizing radiation in late-stage larvae, but lig4 spn-A double mutants do show heightened sensitivity relative to spn-A single mutants. Together, our results suggest that a LIG4-independent end-joining pathway is responsible for the majority of double-strand break repair in the absence of homologous recombination in flies.  相似文献   

11.
The central step of homologous recombination is the DNA strand exchange reaction catalyzed by bacterial RecA or eukaryotic Rad51. Besides Rad51-mediated synthesis-dependent strand annealing (SDSA), DNA ends can promote replication in Escherichia coli (recombination-dependent replication, RDR) and yeast (break-induced replication, BIR). However, what causes a DNA end to be repaired via SDSA or via BIR/RDR? I propose that Rad51/RecA--DNA plectonemic joints act as barriers to DNA replication and that BIR/RDR is only possible when the DNA polymerase that synthesizes DNA from the invading 3' end does not encounter RecA/Rad51--DNA joints in its path.  相似文献   

12.
In gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. Gene replacement in the moss Physcomitrella patens is extremely efficient, but often large amounts of additional DNA are integrated at the target locus. A detailed analysis of recombination junctions of PpCOL2 gene knockout mutants shows that the integrated DNA can be highly rearranged. Our data suggest that the replaced sequences were excised by HR and became integrated back into the genome by non‐homologous end‐joining (NHEJ). RAD51‐mediated strand‐invasion and subsequent strand‐exchange is central to the two‐end invasion pathway, the major gene replacement pathway in yeast. In this pathway, integration is initiated by the free ends of a single replacement vector‐derived donor molecule which then integrates as an entity. Gene replacement in P. patens is entirely RAD51‐dependent suggesting the existence of a pathway mechanistically similar to two‐end invasion. However, invasion of the two ends does not seem to be stringently coordinated in P. patens. Actually, often only one fragment end became integrated by HR, or one‐sided integration of two independent donor fragments occurred simultaneously leading to a double‐strand break that is subsequently sealed by NHEJ and thus causes the observed rearrangements.  相似文献   

13.
14.
Repair of chromosomal breaks is essential for cellular viability, but misrepair generates mutations and gross chromosomal rearrangements. We investigated the interrelationship between two homologous-repair pathways, i.e., mutagenic single-strand annealing (SSA) and precise homology-directed repair (HDR). For this, we analyzed the efficiency of repair in mammalian cells in which double-strand break (DSB) repair components were disrupted. We observed an inverse relationship between HDR and SSA when RAD51 or BRCA2 was impaired, i.e., HDR was reduced but SSA was increased. In particular, expression of an ATP-binding mutant of RAD51 led to a >90-fold shift to mutagenic SSA repair. Additionally, we found that expression of an ATP hydrolysis mutant of RAD51 resulted in more extensive gene conversion, which increases genetic loss during HDR. Disruption of two other DSB repair components affected both SSA and HDR, but in opposite directions: SSA and HDR were reduced by mutation of Brca1, which, like Brca2, predisposes to breast cancer, whereas SSA and HDR were increased by Ku70 mutation, which affects nonhomologous end joining. Disruption of the BRCA1-associated protein BARD1 had effects similar to those of mutation of BRCA1. Thus, BRCA1/BARD1 has a role in homologous repair before the branch point of HDR and SSA. Interestingly, we found that Ku70 mutation partially suppresses the homologous-repair defects of BARD1 disruption. We also examined the role of RAD52 in homologous repair. In contrast to yeast, Rad52(-)(/)(-) mouse cells had no detectable HDR defect, although SSA was decreased. These results imply that the proper genetic interplay of repair factors is essential to limit the mutagenic potential of DSB repair.  相似文献   

15.
Ataxia-telangiectasia mutated (ATM) is needed for the initiation of the double-strand break (DSB) repair by homologous recombination (HR). ATM triggers DSB end resection by stimulating the nucleolytic activity of CtIP and MRE11 to generate 3′-ssDNA overhangs, followed by RPA loading and RAD51 nucleofilament formation. Here we show for the first time that ATM is also needed for later steps in HR after RAD51 nucleofilament formation. Inhibition of ATM after completion of end resection did not affect RAD51 nucleofilament formation, but resulted in HR deficiency as evidenced by (i) an increase in the number of residual RAD51/γH2AX foci in both S and G2 cells, (ii) the decrease in HR efficiency as detected by HR repair substrate (pGC), (iii) a reduced SCE rate and (iv) the radiosensitization of cells by PARP inhibition. This newly described role for ATM was found to be dispensable in heterochromatin-associated DSB repair, as KAP1-depletion did not alleviate the HR-deficiency when ATM was inhibited after end resection. Moreover, we demonstrated that ATR can partly compensate for the deficiency in early, but not in later, steps of HR upon ATM inhibition. Taken together, we describe here for the first time that ATM is needed not only for the initiation but also for the completion of HR.  相似文献   

16.
The MRE11‐RAD50‐NBS1 (MRN) complex is essential for the detection of DNA double‐strand breaks (DSBs) and initiation of DNA damage signaling. Here, we show that Rad17, a replication checkpoint protein, is required for the early recruitment of the MRN complex to the DSB site that is independent of MDC1 and contributes to ATM activation. Mechanistically, Rad17 is phosphorylated by ATM at a novel Thr622 site resulting in a direct interaction of Rad17 with NBS1, facilitating recruitment of the MRN complex and ATM to the DSB, thereby enhancing ATM signaling. Repetition of these events creates a positive feedback for Rad17‐dependent activation of MRN/ATM signaling which appears to be a requisite for the activation of MDC1‐dependent MRN complex recruitment. A point mutation of the Thr622 residue of Rad17 leads to a significant reduction in MRN/ATM signaling and homologous recombination repair, suggesting that Thr622 phosphorylation is important for regulation of the MRN/ATM signaling by Rad17. These findings suggest that Rad17 plays a critical role in the cellular response to DNA damage via regulation of the MRN/ATM pathway.  相似文献   

17.
DNA double-strand breaks (DSBs), a major source of genome instability, are often repaired through homologous recombination pathways. Models for these pathways have been proposed, but the precise mechanisms and the rules governing their use remain unclear. In Drosophila, the synthesis-dependent strand annealing (SDSA) model can explain most DSB repair. To investigate SDSA, we induced DSBs by excision of a P element from the male X chromosome, which produces a 14-kb gap relative to the sister chromatid. In wild-type males, repair synthesis tracts are usually long, resulting in frequent restoration of the P element. However, repair synthesis is often incomplete, resulting in internally deleted P elements. We examined the effects of mutations in spn-A, which encodes the Drosophila Rad51 ortholog. As expected, there is little or no repair synthesis in homozygous spn-A mutants after P excision. However, heterozygosity for spn-A mutations also resulted in dramatic reductions in the lengths of repair synthesis tracts. These findings support a model in which repair DNA synthesis is not highly processive. We discuss a model wherein repair of a double-strand gap requires multiple cycles of strand invasion, synthesis, and dissociation of the nascent strand. After dissociation, the nascent strand may anneal to a complementary single strand, reinvade a template to be extended by additional synthesis, or undergo end joining. This model can explain aborted SDSA repair events and the prevalence of internally deleted transposable elements in genomes.  相似文献   

18.
Accurate DNA double-strand break repair through homologous recombination is essential for preserving genome integrity. Disruption of the gene encoding RAD51, the protein that catalyzes DNA strand exchange during homologous recombination, results in lethality of mammalian cells. Proteins required for homologous recombination, also play an important role during DNA replication. To explore the role of RAD51 in DNA replication and DSB repair, we used a knock-in strategy to express a carboxy-terminal fusion of green fluorescent protein to mouse RAD51 (mRAD51-GFP) in mouse embryonic stem cells. Compared to wild-type cells, heterozygous mRad51+/wt-GFP embryonic stem cells showed increased sensitivity to DNA damage induced by ionizing radiation and mitomycin C. Moreover, gene targeting was found to be severely impaired in mRad51+/wt-GFP embryonic stem cells. Furthermore, we found that mRAD51-GFP foci were not stably associated with chromatin. From these experiments we conclude that this mRad51-GFP allele is an antimorphic allele. When this allele is present in a heterozygous condition over wild-type mRad51, embryonic stem cells are proficient in DNA replication but display defects in homologous recombination and DNA damage repair.  相似文献   

19.
The repair of DNA double strand breaks by homologous recombination can occur by at least two pathways: a Rad51-dependent pathway that is predominantly error free, and a Rad51-independent pathway (single strand annealing, SSA) that is error prone. In theory, chromosome exchanges can result from (mis)repair by either pathway. Both repair pathways will involve a search for homologous sequence, leading to co-localization of chromatin. Genes involved in homologous recombination repair (HRR) have now been successfully knocked out in mice and the role of HRR in the formation of chromosome exchanges, particularly after ionising radiation, is discussed in the light of new evidence.  相似文献   

20.
HO endonuclease-induced double-strand breaks (DSBs) within a direct duplication of Escherichia coli lacZ genes are repaired either by gene conversion or by single-strand annealing (SSA), with >80% being SSA. Previously it was demonstrated that the RAD52 gene is required for DSB-induced SSA. In the present study, the effects of other genes belonging to the RAD52 epistasis group were analyzed. We show that RAD51, RAD54, RAD55, and RAD57 genes are not required for SSA irrespective of whether recombination occurred in plasmid or chromosomal DNA. In both plasmid and chromosomal constructs with homologous sequences in direct orientation, the proportion of SSA events over gene conversion was significantly elevated in the mutant strains. However, gene conversion was not affected when the two lacZ sequences were in inverted orientation. These results suggest that there is a competition between SSA and gene conversion processes that favors SSA in the absence of RAD51, RAD54, RAD55 and RAD57. Mutations in RAD50 and XRS2 genes do not prevent the completion, but markedly retard the kinetics, of DSB repair by both mechanisms in the lacZ direct repeat plasmid, a result resembling the effects of these genes during mating-type (MAT) switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号