首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The establishment and reinforcement of dominance status is thought to provide an individual with increased access to preferred resources, such as food, mates, and shelter. Resources within an environment vary based on their availability, abundance, and specific characteristics of the resource. Animals can exhibit preferences for resources by increasing the intensity of competition for access to the resource. We investigated the role that dominance has in acquiring and controlling resources within crayfish populations. Populations of 5 size‐matched crayfish were allowed to establish a social hierarchy in the presence of shelters of differing structure in 10 different trials. Crayfish agonistic interactions and the use and control of shelters were quantified from 96 h continuous video recordings. Shelter preference was defined by crayfish use of specific shelter types that were occupied for longer durations. Analysis of the social hierarchy demonstrated that crayfish have a linearity hierarchy in this context. In addition, it is clear that dominance rank had a significant impact on shelter use, shelter acquisition, and shelter eviction. Crayfish with lower average dominance ranks selected specific shelter types (smaller and fewer openings). Dominant crayfish used big shelters and were less likely to be evicted from shelters. These results demonstrate that dominance in crayfish serves a role in the acquisition of resources and is also important for the control of those resources.  相似文献   

2.
Crayfish are aggressive animals that compete to acquire resources such as shelters, food, and mates. Shelters are a primary resource that crayfish use for protection from conspecifics and predators. Despite the importance of this resource, no field research has been performed that studies the acquisition and control of this resource. The present study examines shelter use in a natural habitat and the impact that shelter ownership has on the intensity and outcome of agonistic encounters. A stationary underwater camera was used to observe crayfish, Orconectes rusticus, shelter use and agonistic interactions in a natural lake environment. These shelters were formed naturally in iron outcroppings found on the limestone and detritus benthos. Crayfish activity and shelter use was found to be dependent upon a circadian cycle with most of the shelter use occurring during the morning to early afternoon (05:00–13:00 hours). Agonistic encounters in the presence of shelters resulted in short, low intensity interactions. Interestingly, fight outcomes were not significantly affected by shelter ownership, but were primarily determined by size differential of combatants. This outcome may be due to the prevalence of shelters within this habitat. Contrary to laboratory studies, these results indicate that shelter ownership may not be an important factor in determining resource‐holding potential in some habitats.  相似文献   

3.
The effects of temporal variation in exposure to predation risk on behavioral tradeoffs were tested in the rusty crayfish, Orconectes rusticus. Based on the risk allocation hypothesis, we predicted that increasing the frequency of encounter with predation risk would yield increasing responses to a food stimulus in the presence of both a risk stimulus and a food stimulus. Crayfish were exposed to risk every 12 h, every 6 h, or left undisturbed for 24 h prior to testing. The risk stimuli used were a plain water control, snapping turtle (Chelydra serpentina) cue, and conspecific alarm cue. After 24 h of conditioning, the crayfish were exposed to a combination of risk cue and food cue. The behavioral responses of the crayfish were recorded for 5 min immediately following the introduction of the cues and again for 5 min, 1 h after stimulus exposure. The crayfish were observed at the two times to determine how their responses to the combination of risk and food cues changed over time. The responses of the crayfish were significantly influenced by stimulus treatment, time, and the interaction of time and stimulus treatment. Further analysis indicated that responses to the stimulus treatments changed differently over time. Immediately after exposure, the crayfish were more active in the control and snapping turtle treatments than in the conspecific alarm treatment. The high levels of activity initially observed in the control and snapping turtle treatments waned over time, such that the behaviors recorded 1 h after exposure were not significantly affected by stimulus treatment. Neither frequency nor the interactions of frequency with stimulus and/or time significantly affected crayfish behavior. The results of this study did not support the risk allocation model and contrast with results from similar work on the virile crayfish, Orconectes virilis.  相似文献   

4.
Animals use sensory communication to locate conspecifics, food, shelter, and avoid predators. Using urine visualization techniques as well as Digital Particle Illumination Velocimetry, we examined the role of urinary signals and current generations during social interactions of male and female crayfish. Both reproductive and non‐reproductive crayfish were paired to gain a better understanding of how reproductive state influences communication. Analyses of agonistic and mating events were paired in time with recorded urine release and current generation, illustrating a correlation of chemical communication with ritualized social behavior. Four treatment groups were run with specific combinations of different reproductive status: (1) both opponents reproductively active, (2) only the male in reproductive, (3) only the female reproductive, or (4) both opponents non‐reproductive. Results showed differences between treatment groups in urine release, current generation, and social behavior. Within reproductive pairings, both the male and female crayfish generated currents and released urine at higher rates than those in other treatment groups. Urine was released most often when opponents were in chelae contact with each other and these releases were often accompanied by anterior current generation. In addition, communication was different in reproductive trials where mating occurred. Overall, the results indicate that the use of hydrodynamic and chemical signals changes as a function of reproductive state and that this change in communication probably indicates readiness to mate.  相似文献   

5.
Crayfish, bearing dangerous weapons in the form of chelae, resolve intraspecific conflicts using stereotyped behaviors and structured, escalated encounters. According to predictions of game theory models, any decision to resort to unrestrained combat without prior careful behavioral assessment of the opponent's fighting abilities carries great risks. The present study examines the significance of internal hunger states and the presence of chemical food cues in this decision process using a 2 × 2 factorial design. Hungry crayfish escalated more rapidly, and thus took greater risks, during agonistic encounters, while the presence of a food source reduced the rate at which fights increased in intensity. However, there were no significant differences in fighting behavior as a result of the interaction between these two variables. We then address the complex trade-offs that individuals face in fighting with respect to increased risks of injury, appetitive states, and opportunities for resource access.  相似文献   

6.
The ecology and life histories of Orconectes rusticus rusticus (GIRARD) and Cambarus tenebrosus HAY were investigated in a spring stream, Doe Run, Meade County, Kentucky, from September 1962 through September 1964. Differences in ecology of these species were most clearly seen in their habitat preferences and distributions in the stream, their feeding habits, responses to temperature, and infestations by an harpacticoid copepod Attheyella carolinensis CHAPPUIS, and in other life history phenomena, particularly with regard to reproduction and growth. Cambarus tenebrosus was most abundant in the constant temperature areas of the headwaters of Doe Run. Orconectes r. rusticus was found only in the lower three-fourths of the stream. Water temperatures in the headwater area may have been too low (12 — 14 C) for optimal growth of the crayfish had it existed there. Adults of C. tenebrosus were primarily hypogean, but young and subadults frequented the open stream environment. Orconectes r. rusticus was primarily an open stream inhabitant, and was sympatric with C. tenebrosus subadults and young in the downstream areas. When C. tenebrosus occurred in the open environment, it was most abundant in association with vegetation, and hence, was more heavily infested with A. carolinensis than O. r. rusticus. Detritus, mainly from fallen leaves and marl grazings, apparently formed the most important component of the diet of O. r. rusticus. Vascular plants, mainly fallen leaves from the riparian vegetation, constituted the main portion of the diet of C. tenebrosus; filamentous algae were widely used where and when they were present. Orconectes r. rusticus eggs hatch in May. These hatchlings become mature in 15 months and females oviposit after 22 – 24 months from March —May. Sexual maturity is attained at a carapace length of about 18 mm; maximum size is 45 mm. Most animals die after about 2.5 years; however, some live for three years. Molting activity ceases in winter. Cambarus tenebrosus young hatch in July and August. Most hatchlings remain in the burrows until October and November at which time they emerge in response to dominance behavior. Growth occurs throughout the winter months, and sexual maturity is attained in 20 – 22 months when the crayfish are about 40 mm in carapace length. Mature females oviposit during June and July after about 22–23 months, and probably again after 34–35 months. Mating occurs during the winter and spring. In Doe Run, maximum size attained is 65 mm carapace length. Cambarus tenebrosus probably lives for 36 – 38 months.  相似文献   

7.
Agonistic behavior is a fundamental aspect of ecological theories on resource acquisition and sexual selection. Crustaceans are exemplary models for agonistic behavior within the laboratory, but agonistic behavior in natural habitats is often neglected. Laboratory studies do not achieve the same ecological realism as field studies. In an attempt to connect laboratory results to field data and investigate how habitat structure affects agonistic interactions, the nocturnal behavior of two crayfish species was observed by scuba diving and snorkeling in two northern Michigan lakes. Intraspecific agonistic interactions were analyzed in three habitats: two food resources-macrophytes and detritus-and one sheltered habitat. The overall observations reinforce the concept that resources influence agonistic bouts. Fights in the presence of shelters were longer and more intense, suggesting that shelters have a higher perceived value than food resources. Fights in the presence of detritus patches had higher average intensities and ended with more tailflips away from an opponent, suggesting that detritus was a more valuable food resource than macrophytes. In addition, observations of aggressive behavior within a natural setting can add validity to laboratory studies. When fights in nature are compared with laboratory fights, those in nature are shorter, less intense, and less likely to end with a tailflip, but do show the fundamental fight dynamics associated with laboratory studies. Extrinsic and intrinsic factors affect intraspecific aggression in many ways, and both should always be recognized as having the potential to alter agonistic behavior.  相似文献   

8.
Abstract The non-native rusty crayfish (Orconectes rusticus) has invaded many lakes of northern Wisconsin, profoundly changing littoral zones in the process. There are other lakes that have been invaded, but do not exhibit these changes. We hypothesized that endogenous feedbacks could form involving rusty crayfish, the macrophytes they destroy, and Lepomis species whose abundance is positively related to macrophyte abundance and also consume juvenile crayfish. We assessed this proposal with long-term data from one lake, a regional comparative study, and a case study of Lepomis predation on crayfish. Through time and across lakes, abundances of rusty crayfish, littoral macrophytes and species of the genus Lepomis were related in a fashion that indicated a set of feedbacks that regulate the abundance of all three. Intense predation on juvenile crayfish by abundant Lepomis is capable of maintaining some crayfish populations at low abundance. Thus, some lakes display profound ecological changes where crayfish achieve high abundance, and others sustain crayfish at low abundance. Consequently, lakes invaded by rusty crayfish may take on the appearance of alternative ecological regimes. Direct experimentation is necessary to determine if, and under what conditions, a lake can exist in either regime. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Homing behaviors are seen across the animal kingdom, with the magnitude and scale of these movements varying to a great degree. Invertebrates, such as crayfish, prove to be excellent models for comparative research, with relatively simple nervous systems that have been extensively studied combined with a rich behavioral repertoire that has been well documented. Here we explore whether two crayfish species (a primary burrower and a tertiary burrower) can home to artificial burrows and if so, whether their homing abilities differ. The two species of crayfish, Orconectes rusticus and Fallicambarus fodiens, were examined for their ability to home to artificial burrows in a laboratory setting. Animals were placed in a homing arena, motivated to search by the presence of food, and subsequently return to the burrows. The movements of each individual crayfish were digitized and analyzed for changes in walking speed, velocity and heading angle relative to burrows, total distance travelled and path turning angles. Crayfish of both species successfully returned home, although F. fodiens had a higher homing success rate than O. rusticus. Detailed kinematic analysis showed that walking speeds almost doubled during homing to burrows and heading angles were significantly closer to zero than on the outward journeys for both species. Path turning angles were significantly lower for O. rusticus than for F. fodiens. These findings indicate that these species of crayfish can successfully home without the visual landmark of burrow chimneys and that the primary burrower (F. fodiens) appears to be more successful with straighter return paths. The differences in these two species to home and the underlying mechanisms of homing may be due to the differences in burrow use with primary burrowers showing more efficient homing than tertiary burrowers.  相似文献   

10.
Exogenous serotonin elicits several behaviors in Procambarus clarkii, including a flexed, elevated posture, reduced locomotion, and changes in aggressive behavior. We conducted experiments to determine if several serotonin agonists mimicked the behavioral effects of serotonin in two crayfish species, P. clarkii and Orconectes rusticus. Drugs tested were 1-(3-Chlorophenyl)-piperazine dihydrochloride (mCPP), Oxymetazoline, 2,5-dimethoxy-4-iodoamphetamine (DOI), CGS-12066A, and (+/-)-8-hydroxy-2-(di-n-dipropylamino) tetralin (8-OH-DPAT). In P. clarkii, mCPP most closely mimicked the effects of serotonin, significantly increasing the performance of the flexed, elevated posture and reducing locomotion; 8-OH-DPAT significantly reduced locomotion as well. Both of these drugs produced significant increases in elevated posture and decreases in locomotion in O. rusticus, and in this species, the drugs at test concentrations were more effective in eliciting these effects than serotonin. The effects of the drugs on behaviors performed during fighting bouts were variable. In both species, only 8-OH-DPAT significantly reduced several agonistic behaviors, and no agonist or 5-HT itself produced significant increases in agonistic behavior.  相似文献   

11.
Many factors can affect the outcome of a competitive interaction. One such factor is the relatedness between competitors as competitive intensity may decrease between kin. Because adult females lay eggs in clusters, larvae of the moth Utetheisa ornatrix are likely to be found in high densities of their siblings. Larval U. ornatrix actively compete for access into seedpods of their host plant (Crotalaria spp.), and successful competitors will reap numerous reproductive benefits during adulthood. The objective of this study was to determine whether residency, size, sex, and relatedness affect competition over seedpods in U. ornatrix larvae. In one‐on‐one trials for access into artificial seedpods, we monitored occupancy and weight change of larvae varying in residency, size, sex, and relatedness. We found that larger larvae have a competitive advantage over smaller larvae. This finding has consequences for the mating system of U. ornatrix in that females, by selecting males based on pheromone levels that are correlated with body size, can rear larger offspring that will have an advantage in competition over seedpods. These data did not support our hypothesis that males would outcompete females, perhaps because the rewards of acquiring a seedpod are substantial for both sexes. Finally, our data show that resident larvae are more likely to maintain control of seedpods over sibling than non‐siblings intruders, which suggests that relatedness affects competitive interactions.  相似文献   

12.
In many animals, body size plays a crucial role in mating success in the context of competition and preference for mates. Increasing evidence has shown that male mate preference can be size‐dependent and, therefore, an important driver of size‐assortative mating. To test this theory, mate choice experiments were performed during the three consecutive stages of mating behaviour, namely trail following, shell mounting and copulation, in the dioecious mangrove snail, Littoraria ardouiniana. These experiments identified two possible forms of size‐dependent male mate preference which could contribute to the formation of size‐assortative mating in these snails. Firstly, whereas small males were unselective, large males were selective and preferred to follow mucus trails laid by large females. Alternatively, the results can also be interpreted as all males were selective and adopted a mating strategy of selecting females similar to, or larger than, their own sizes. Both small and large males also copulated for longer with large than with small females, and this was more pronounced in large males. When two males encountered a female, they engaged in physical aggression, with the larger male excluding the smaller male from copulating with the female. This study, therefore, demonstrated that size‐dependent male mate preference may, along with male–male competition, play an important role in driving size‐assortative mating in these mangrove snails, and this may also be the case in other species that exhibit male mate choice.  相似文献   

13.
When size‐dependent contests over resources influence reproductive success, the trade‐off between number and size of offspring depends on the frequency of contests. Under these circumstances, clutch size should decrease and offspring size should increase as contests become more frequent. We tested these predictions with the burying beetle Nicrophorus pustulatus through manipulation of rearing densities. Burying beetles reproduce on small vertebrate carcasses, a rare but high quality food source for the larvae. Large beetles are more likely to win contests over carcasses and gain exclusive access to a carcass. The winner of a contest kills eggs and larvae already present on a carcass. As a result of the rarity of carcasses, burying beetles are unlikely to breed more than once. As predicted, brood size of N. pustulatus decreased with increasing rearing density. Despite a negative correlation between brood size and larval mass, larval mass did not increase with increasing rearing density. This may be due to the special biology of N. pustulatus which can use snake eggs for reproduction. Potentially larger supply of resources and generally small population densities of N. pustulatus may weaken selection on body size and thus the correlation between brood size and larval mass. As size‐dependent constraints can limit reproductive phenotypes, we examined whether female size influenced reproductive phenotype. Small females produced larger broods with smaller, but more variable, offspring than large females. Mechanical constraints of egg size seem an unlikely explanation for the differences because burying beetles can compensate for small egg size through parental care. Energetic constraints may impact small females because body mass and brood size of small females decreased with increasing density. Yet, at all density levels small females produced larger, not smaller, broods than large females. The larger and more variable broods of small females seem to be in agreement with a bet‐hedging strategy.  相似文献   

14.
15.
Competing group members tend to arrange in a social order that governs who will likely submit to whom. In many species the spatial distribution of individuals often reflects social status: dominants tend to occupy central locations while subordinates are often found along the group's periphery. This article explores the emergence of spatial consequences as a result of social rank differentiation. Rather than orienting centripetally, the movements of crayfish (Orconectes rusticus) primarily indicated a tendency to remain close to arena walls. Spatial locations were affected by the location of group members; but, rather than actively aggregating or clustering, individuals maintained a minimum distance. Previously established social rank did not affect spatial distributions. High population densities in the field are likely attributed to habitat constraints, rather than any social or centripetal tendencies of individual crayfish.  相似文献   

16.
It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top‐predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient‐enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long‐term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long‐term effects of declining body size on the bioenergetic balance of natural communities.  相似文献   

17.
Understanding factors that affect the persistence of charismatic megafauna in human‐dominated landscapes is crucial to inform conservation decision‐making and reduce human‐wildlife conflict. We assessed the effect of environmental and anthropogenic factors at different landscape and management scales in predicting the distribution of African elephant (Loxodonta africana) within the Greater Mapungubwe Transfrontier Conservation Area in Southern Africa. We combined aerial distribution counts over a 12‐yr period with 14 variables, representing food availability, landscape, and anthropogenic effects, into generalized linear models. Generalized linear models were run for the broader landscape, as well as three separate management units within the broader landscape, namely ecotourism, trophy hunting, and a combination of hunting and ecotourism. Human activities within different management units forced elephant to trade‐off between disturbance avoidance, and good food and water availability. In addition, the important predictors of elephant distribution within each of the management units differed from the predictors at the broader landscape. Overall, our results suggest that at the fine scale, elephant are constraint by factors that may be masked at the broader landscape scale. We suggest that accounting for anthropogenic disturbance is important in determining the distribution of large, wide‐ranging, mammal species in increasingly human‐dominated landscapes, and that modeling needs to be done at the spatial scales at which conservation decisions are made.  相似文献   

18.
Individuals within a population often differ considerably in size or resource status as a result of environmental variation. In these circumstances natural selection would favour organisms not with a single, genetically determined allocation, but with a genetically determined allocation rule specifying allocation in relation to size or environment. Based on a graphical analysis of a simple evolutionarily stable strategy (ESS) model for herbaceous perennial plants, we aim to determine how cosexual plants within a population should simultaneously adjust their reproductive allocation and sex allocation to their size. We find that if female fitness gain is a linear function of resource investment, then a fixed amount of resources should be allocated to male function, and to post‐breeding survival as well, for individuals above a certain size threshold. The ESS resource allocation to male function, female function, and post‐breeding survival positively correlate if both male and female fitness gains are a saturating function of resource investment. Plants smaller than the size threshold are expected to be either nonreproductive or functionally male only.  相似文献   

19.
In order to yield some insights into the planktonic food web structure of new reservoirs, size‐fractionated biomass and productivity of phytoplankton were examined from 1996 to 1997 (following the 1995 flooding of the Sep Reservoir, Puy‐de‐Dôme, France), in relation to nutrients (P, N) and metazooplankton (Rotifers, Cladocera, Copepods). Autotrophic nanoplankton (ANP, size class 3–45 μm) dominated the phytoplankton biomass (as Chlorophyll a) and production, while autotrophic picoplankton (APP, 0.7–3 μm) exhibited the lowest and relatively constant biomass and production. Cells of the autotrophic microplankton (AMP, >45 μm) were considered inedible for planktonic herbivores. The production‐biomass diagram for the different size classes and the positive correlation between APP production and ANP + AMP production suggested that grazing was potentially more important than nutrients in shaping the phytoplankton size structure. Metazooplankton biomass was low compared to other newly flooded reservoirs or to natural lakes with phytoplankton biomass similar to that of the Sep Reservoir. This resulted in low ratios (metazooplankton to edible phytoplankton) both in terms of production (average 0.43% in 1996 and 0.76% in 1997) and biomass, suggesting that only a small fraction of phytoplankton was directly consumed by metazooplankton. We suggest that the observed low ratios in the Sep Reservoir, reflect possible low metazooplankton inputs in the main influents, changes in hydrologic conditions and a high potential role of microheterotrophs. The latter role was supported by (i) the positive inter‐annual correlation between ciliates and phytoplankton, (ii) the significant and negative correlations between ciliates and metazooplankton, and (iii) the significant and negative correlations between total metazooplankton biomass and total phosphorus (TP), whereas neither TP nor total metazooplankton biomass was correlated with phytoplankton variables.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号