首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Defensins as one of the most abundant classes of antimicrobial peptides are an essential part of the innate immunity that has evolved in most living organisms from lower organisms to humans. To identify specific defensins as interesting antifungal leads, in this study, we constructed a more rigorous benchmark dataset and the iDPF-PseRAAAC server was developed to predict the defensin family and subfamily. Using reduced dipeptide compositions were used, the overall accuracy of proposed method increased to 95.10% for the defensin family, and 98.39% for the vertebrate subfamily, which is higher than the accuracy from other methods. The jackknife test shows that more than 4% improvement was obtained comparing with the previous method. A free online server was further established for the convenience of most experimental scientists at http://wlxy.imu.edu.cn/college/biostation/fuwu/iDPF-PseRAAAC/index.asp. A friendly guide is provided to describe how to use the web server. We anticipate that iDPF-PseRAAAC may become a useful high-throughput tool for both basic research and drug design.  相似文献   

5.
??????? 在医改中硬件是基础,软件是根本,基层医疗机构人才队伍建设问题至关重要,本文就如何吸引毕业生下沉到基层、如何提升基层现存医疗队伍的技术水平提出建议,并为如何实现2020年培养30万名全科医生的总体目标,提出利用社会融资方法培养农村全科医生的构想。  相似文献   

6.

Background

Vitamins are typical ligands that play critical roles in various metabolic processes. The accurate identification of the vitamin-binding residues solely based on a protein sequence is of significant importance for the functional annotation of proteins, especially in the post-genomic era, when large volumes of protein sequences are accumulating quickly without being functionally annotated.

Results

In this paper, a new predictor called TargetVita is designed and implemented for predicting protein-vitamin binding residues using protein sequences. In TargetVita, features derived from the position-specific scoring matrix (PSSM), predicted protein secondary structure, and vitamin binding propensity are combined to form the original feature space; then, several feature subspaces are selected by performing different feature selection methods. Finally, based on the selected feature subspaces, heterogeneous SVMs are trained and then ensembled for performing prediction.

Conclusions

The experimental results obtained with four separate vitamin-binding benchmark datasets demonstrate that the proposed TargetVita is superior to the state-of-the-art vitamin-specific predictor, and an average improvement of 10% in terms of the Matthews correlation coefficient (MCC) was achieved over independent validation tests. The TargetVita web server and the datasets used are freely available for academic use at http://csbio.njust.edu.cn/bioinf/TargetVita or http://www.csbio.sjtu.edu.cn/bioinf/TargetVita.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-297) contains supplementary material, which is available to authorized users.  相似文献   

7.
Lysine crotonylation (Kcr) is an evolution-conserved histone posttranslational modification (PTM), occurring in both human somatic and mouse male germ cell genomes. It is important for male germ cell differentiation. Information of Kcr sites in proteins is very useful for both basic research and drug development. But it is time-consuming and expensive to determine them by experiments alone. Here, we report a novel predictor called iKcr-PseEns that is established by incorporating five tiers of amino acid pairwise couplings into the general pseudo amino acid composition. It has been observed via rigorous cross-validations that the new predictor's sensitivity (Sn), specificity (Sp), accuracy (Acc), and stability (MCC) are 90.53%, 95.27%, 94.49%, and 0.826, respectively. For the convenience of most experimental scientists, a user-friendly web-server for iKcr-PseEns has been established at http://www.jci-bioinfo.cn/iKcr-PseEns, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.  相似文献   

8.
The EC numbers represent enzymes and enzyme genes (genomic information), but they are also utilized as identifiers of enzymatic reactions (chemical information). In the present work (ECAssigner), our newly proposed reaction difference fingerprints (RDF) are applied to assign EC numbers to enzymatic reactions. The fingerprints of reactant molecules minus the fingerprints of product molecules will generate reaction difference fingerprints, which are then used to calculate reaction Euclidean distance, a reaction similarity measurement, of two reactions. The EC number of the most similar training reaction will be assigned to an input reaction. For 5120 balanced enzymatic reactions, the RDF with a fingerprint length at 3 obtained at the sub-subclass, subclass, and main class level with cross-validation accuracies of 83.1%, 86.7%, and 92.6% respectively. Compared with three published methods, ECAssigner is the first fully automatic server for EC number assignment. The EC assignment system (ECAssigner) is freely available via: http://cadd.whu.edu.cn/ecassigner/.  相似文献   

9.
10.
Enzymes are important and effective biological catalyst proteins participating in almost all active cell processes. Identification of multi-functional enzymes is essential in understanding the function of enzymes. Machine learning methods perform better in protein structure and function prediction than traditional biological wet experiments. Thus, in this study, we explore an efficient and effective machine learning method to categorize enzymes according to their function. Multi-functional enzymes are predicted with a special machine learning strategy, namely, multi-label classifier. Sequence features are extracted from a position-specific scoring matrix with autocross-covariance transformation. Experiment results show that the proposed method obtains an accuracy rate of 94.1% in classifying six main functional classes through five cross-validation tests and outperforms state-of-the-art methods. In addition, 91.25% accuracy is achieved in multi-functional enzyme prediction, which is often ignored in other enzyme function prediction studies. The online prediction server and datasets can be accessed from the link http://server.malab.cn/MEC/.  相似文献   

11.
Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ∼10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/.  相似文献   

12.
The mitochondrion is a key organelle of eukaryotic cell that provides the energy for cellular activities. Correctly identifying submitochondria locations of proteins can provide plentiful information for understanding their functions. However, using web-experimental methods to recognize submitochondria locations of proteins are time-consuming and costly. Thus, it is highly desired to develop a bioinformatics method to predict the submitochondria locations of mitochondrion proteins. In this work, a novel method based on support vector machine was developed to predict the submitochondria locations of mitochondrion proteins by using over-represented tetrapeptides selected by using binomial distribution. A reliable and rigorous benchmark dataset including 495 mitochondrion proteins with sequence identity ≤25 % was constructed for testing and evaluating the proposed model. Jackknife cross-validated results showed that the 91.1 % of the 495 mitochondrion proteins can be correctly predicted. Subsequently, our model was estimated by three existing benchmark datasets. The overall accuracies are 94.0, 94.7 and 93.4 %, respectively, suggesting that the proposed model is potentially useful in the realm of mitochondrion proteome research. Based on this model, we built a predictor called TetraMito which is freely available at http://lin.uestc.edu.cn/server/TetraMito.  相似文献   

13.
The structure and activity of enzymes are influenced by pH value of their surroundings. Although many enzymes work well in the pH range from 6 to 8, some specific enzymes have good efficiencies only in acidic (pH<5) or alkaline (pH>9) solution. Studies have demonstrated that the activities of enzymes correlate with their primary sequences. It is crucial to judge enzyme adaptation to acidic or alkaline environment from its amino acid sequence in molecular mechanism clarification and the design of high efficient enzymes. In this study, we developed a sequence-based method to discriminate acidic enzymes from alkaline enzymes. The analysis of variance was used to choose the optimized discriminating features derived from g-gap dipeptide compositions. And support vector machine was utilized to establish the prediction model. In the rigorous jackknife cross-validation, the overall accuracy of 96.7% was achieved. The method can correctly predict 96.3% acidic and 97.1% alkaline enzymes. Through the comparison between the proposed method and previous methods, it is demonstrated that the proposed method is more accurate. On the basis of this proposed method, we have built an online web-server called AcalPred which can be freely accessed from the website (http://lin.uestc.edu.cn/server/AcalPred). We believe that the AcalPred will become a powerful tool to study enzyme adaptation to acidic or alkaline environment.  相似文献   

14.
Liu X  Liu B  Huang Z  Shi T  Chen Y  Zhang J 《PloS one》2012,7(1):e30938

Background

The molecular network sustained by different types of interactions among proteins is widely manifested as the fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global networks are imperative when attempting to address the principles of biology.

Results

We have developed a web-based tool “Sequence-based Protein Partners Search” (SPPS) to explore interacting partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in the SPPS web server.

Conclusions

SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public at http://mdl.shsmu.edu.cn/SPPS/.  相似文献   

15.
Our previous rapid-scanning stopped-flow studies of the reaction of substrate-free cytochrome P450cam with peracids [T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300-20309; J. Inorg. Biochem. 100 (2006) 2034-2044; J. Biol. Inorg. Chem. 13 (2008) 599-611] spectrally characterized compound I (ferryl iron plus a porphyrin π-cation radical (FeIVO/Por+)), Cpd ES, and Cpd II (FeIVO/Tyr or FeIVO). We now report that reactions of CYP153A6 with peracids yield all these intermediates, with kinetic profiles allowing better resolution of all forms at pH 8.0 compared to similar reactions with WT P450cam. Properties of the reactions of these higher oxidation state intermediates were determined in double-mixing experiments in which intermediates are pre-formed and ascorbate is then added. Reactions of heptane-bound CYP153A6 (pH 7.4) with mCPBA resulted in conversion of P450 to the low-spin ferric form, presumably as heptanol was formed, suggesting that CYP 153A6 is a potential biocatalyst that can use peracids with no added NAD(P)H or reducing systems for bioremediation and other industrial applications.  相似文献   

16.
The identification of interactions between drugs and target proteins plays a key role in genomic drug discovery. In the present study, the quantitative binding affinities of drug-target pairs are differentiated as a measurement to define whether a drug interacts with a protein or not, and then a chemogenomics framework using an unbiased set of general integrated features and random forest (RF) is employed to construct a predictive model which can accurately classify drug-target pairs. The predictability of the model is further investigated and validated by several independent validation sets. The built model is used to predict drug-target associations, some of which were confirmed by comparing experimental data from public biological resources. A drug-target interaction network with high confidence drug-target pairs was also reconstructed. This network provides further insight for the action of drugs and targets. Finally, a web-based server called PreDPI-Ki was developed to predict drug-target interactions for drug discovery. In addition to providing a high-confidence list of drug-target associations for subsequent experimental investigation guidance, these results also contribute to the understanding of drug-target interactions. We can also see that quantitative information of drug-target associations could greatly promote the development of more accurate models. The PreDPI-Ki server is freely available via: http://sdd.whu.edu.cn/dpiki.  相似文献   

17.
18.
The apple (Malus domestica) is one of the most economically important fruit crops in the world, due its importance to human nutrition and health. To analyze the function and evolution of different apple genes, we developed apple gene function and gene family database (AppleGFDB) for collecting, storing, arranging, and integrating functional genomics information of the apple. The AppleGFDB provides several layers of information about the apple genes, including nucleotide and protein sequences, chromosomal locations, gene structures, and any publications related to these annotations. To further analyze the functional genomics data of apple genes, the AppleGFDB was designed to enable users to easily retrieve information through a suite of interfaces, including gene ontology, protein domain and InterPro. In addition, the database provides tools for analyzing the expression profiles and microRNAs of the apple. Moreover, all of the analyzed and collected data can be downloaded from the database. The database can also be accessed using a convenient web server that supports a full-text search, a BLAST sequence search, and database browsing. Furthermore, to facilitate cooperation among apple researchers, AppleGFDB is presented in a user-interactive platform, which provides users with the opportunity to modify apple gene annotations and submit publication information for related genes. AppleGFDB is available at http://www.applegene.org or http://gfdb.sdau.edu.cn/.  相似文献   

19.

Background

Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types.

Methods

Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction.

Results

The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource.

Conclusions

THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
  相似文献   

20.
Information about the interactions of drug compounds with proteins in cellular networking is very important for drug development. Unfortunately, all the existing predictors for identifying drug–protein interactions were trained by a skewed benchmark data-set where the number of non-interactive drug–protein pairs is overwhelmingly larger than that of the interactive ones. Using this kind of highly unbalanced benchmark data-set to train predictors would lead to the outcome that many interactive drug–protein pairs might be mispredicted as non-interactive. Since the minority interactive pairs often contain the most important information for drug design, it is necessary to minimize this kind of misprediction. In this study, we adopted the neighborhood cleaning rule and synthetic minority over-sampling technique to treat the skewed benchmark datasets and balance the positive and negative subsets. The new benchmark datasets thus obtained are called the optimized benchmark datasets, based on which a new predictor called iDrug-Target was developed that contains four sub-predictors: iDrug-GPCR, iDrug-Chl, iDrug-Ezy, and iDrug-NR, specialized for identifying the interactions of drug compounds with GPCRs (G-protein-coupled receptors), ion channels, enzymes, and NR (nuclear receptors), respectively. Rigorous cross-validations on a set of experiment-confirmed datasets have indicated that these new predictors remarkably outperformed the existing ones for the same purpose. To maximize users’ convenience, a public accessible Web server for iDrug-Target has been established at http://www.jci-bioinfo.cn/iDrug-Target/, by which users can easily get their desired results. It has not escaped our notice that the aforementioned strategy can be widely used in many other areas as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号