首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The X-ray diffraction patterns of the fd, If1 and IKe strains of filamentous bacterial viruses (class I) indicate that the arrangement of capsid proteins in the virion approximates a left-handed helix of 15 Å pitch with 4.5 units per turn. The protein molecules are each elongated in an axial direction, and also slope radially, so as to overlap each other and give an arrangement of molecules reminiscent of scales on a fish. This helix of capsid proteins is related to the class II helix by a small twist about the helix axis. The protein molecules are also perturbed (by a few Ångström units) away from the positions that they would occupy in a simple 4.5 units per turn helix. The perturbation repeats about every five protein molecules, and is mainly axial. This arrangement of proteins forms a tube with inner diameter about 20 Å and outer diameter about 60 Å, encapsulating the DNA.  相似文献   

2.
X-ray fibre diffraction and scanning transmission electron microscopy have been used to investigate the structure of an intracellular complex between circular single-stranded viral DNA and a viral DNA-binding protein. This complex is an intermediate between replication and assembly of the filamentous bacteriophage Pf1. By scanning transmission electron microscopy, the complex has a length of 1.00 μm and Mr = 29.6 × 106. It consists of 1770 protein subunits, each of 15,400 Mr, and one viral DNA molecule of 2.3 × 106Mr: there are 4.2 ± 0.5 nucleotides per subunit. The structure is flexible in solution, but in oriented dry fibres it forms a regular helix of 45 Å pitch having 6.0 dimeric protein subunits per turn, with an axial spacing of 7.5 Å between dimers and 1.9 Å between adjacent nucleotides. Model calculations suggest that the protein dimers may be oriented in a direction approximately perpendicular to the 45 Å helix, so that each dimer spans the two anti-parallel DNA chains. The results imply that conformational changes are required of the DNA as it is transferred from the double-stranded form to the replication-assembly complex, and subsequently to the virion.  相似文献   

3.
The third domain of Japanese quail ovomucoid, a Kazal type inhibitor, has been crystallized and its crystal structure determined at 2.5 Å resolution using multiple isomorphous replacement techniques. The asymmetric unit contains four molecules. In the crystal the molecules are arranged in two slightly different octamers with approximate D4 symmetry. The molecules are held together mainly by interactions of the N-terminal residues, which form a novel secondary structural element, a β-channel.The molecule is globular with approximate dimensions 35 Å × 27 Å × 19 Å. The secondary structural elements are a double-stranded anti-parallel β-sheet of residues Pro22 to Gly32 and an α-helix from Asn33 to Ser44. The reactive site Lys18-Asp19 is located in an exposed loop. It is close to Asn33 at the N terminus of the helical segment. The polypeptide chain folding of ovomucoid bears some resemblance to other inhibitors in the existence of an anti-parallel double strand following the reactive site loop.  相似文献   

4.
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.  相似文献   

5.
Complexes of Escherichia coli lac-repressor with non-operator DNA have been visualized in the electron microscope using high-resolution metal shadowing and negative staining. Under conditions of a high ratio of repressor to DNA, all the DNA molecules are covered by repressor molecules and the resulting complexes appear as flattened ribbons with a width of approximately 200 Å. The overall dimensions of these complexes and their substructure indicate that it is very likely that repressor molecules are tightly packed on both “sides” of the DNA helix. Thus two repressor molecules can share the same segment of non-operator DNA by binding to opposite sides of the DNA helix.  相似文献   

6.
From small-angle X-ray scattering experiments on solutions of Escherichia coli lac repressor and repressor tryptic core, we conclude that the domains of repressor that bind to operator DNA lie at the ends of an elongated molecule. The addition of the inducer, isopropyl-β-d-thiogalactoside, to either repressor or core does not produce a measurable structural change, since the radius of gyration of repressor is 40.3 ± 1.9 Å without and 42.2 ± 1.7 Å with isopropyl-β-d-thiogalactoside; the core radius of gyration is 35.4 ± 1.1 Å without ligand and 36.3 ± 1.1 Å with isopropyl-β-d-thiogalactoside. In the context of data from single crystals of repressor and core, the measured radii of gyration are shown to be consistent with a core (or repressor) molecule of dimensional anisotropy 1: (1.5 to 2.0): (3.0 to 4.0). The 5 Å difference in radius of gyration between native and core repressor is interpreted to mean that the amino terminal 59 residues (headpieces) lie at the ends of an elongated repressor molecule. This structure implies that the repressor may have DNA binding sites, consisting of two adjacent headpieces, on each end of the molecule and this binds to the DNA with its long axis perpendicular to the DNA.  相似文献   

7.
The crystal structure of the B-polymorph of amylose appears to be based on double-stranded helices. The individual strands are in a right-handed six-fold helical conformation repeating in 20.8 Å and are wound parallel around each other. The steric disposition of O-6 is gt. The double helices pack in a hexagonal unit-cell (ab  18.50 Å, c (fiber repeat)  10.40 Å, γ  120°), with two helices (12 d-glucose residues) per cell. The helices are packed antiparallel and leave an open channel within a hexagonal array that is filled with water molecules. The reliability of the structure analysis is indicated by R  0.22. The structure of B-amylose is consistent with the diffraction diagrams of B-starches and accounts for the physical properties of such starches.  相似文献   

8.
recA protein, which is essential for the recombination process in Escherichia coli, was incubated in the presence of 5′-γ-thiotriphosphate with circular plasmid pBRβG containing small single-stranded gaps. Stable complexes were formed which appear in the electron microscope as fibres with a diameter about five times that of naked DNA. Complex formation appears to be a co-operative process whereby the average rise per base-pair with respect to the fibre axis increases from 3·39 ± 0·08 Å to 5·20 ± 0·18 Å. The elongation of DNA by about 50% is compatible with an unwinding of the double helix and an intercalating mode of binding of recA and/or 5′-γ-thiotriphosphate to DNA.  相似文献   

9.
Cytochromes c' are heme proteins found in photosynthetic and denitrifying bacteria, where they are presumably involved in electron transport. The cytochrome c' isolated from the bacterium Rhodocyclus gelatinosus (RGCP) forms a homodimer with each polypeptide containing 129 residues. It has been crystallised in ammonium sulfate at pH?6. Crystals belong to space group P3121 with cell parameters a?=?70.2?Å and c?=?126.8?Å, which corresponds to a dimer in the asymmetric unit (VM?=?3.5?Å3?/?Da). The crystal structure of RGCP was solved by the molecular replacement method and refined using data to 2.5-Å resolution. The final crystallographic R factor was 17.9% for all reflections (above 2?σ) in the resolution range 27.4 to 2.5?Å. The refined model includes 1876 non-hydrogen protein atoms and 56 water molecules. As typical of c–type cytochromes, the heme group is covalently bound to Cys-X-Y-Cys-His through thio-ether bonds, and His123 occupies the fifth axial coordination position. On the vacant "distal" site, Phe16 blocks the direct access to the sixth coordination site, which is in a predominantly hydrophobic environment. In spite of the low sequence homology among cytochromes c' the overall fold is similar. The monomer structure consists of 4 anti-parallel α-helices and has random coils in the loops between the helices, and at the N- and C-termini. The subunits cross each other to form an X shape.  相似文献   

10.
《FEBS letters》2014,588(24):4637-4644
DNA double-strand breaks can be repaired by homologous recombination, during which the DNA ends are long-range resected by helicase–nuclease systems to generate 3′ single strand tails. In archaea, this requires the Mre11–Rad50 complex and the ATP-dependent helicase–nuclease complex HerA–NurA. We report the cryo-EM structure of Sulfolobus solfataricus HerA–NurA at 7.4 Å resolution and present the pseudo-atomic model of the complex. HerA forms an ASCE hexamer that tightly interacts with a NurA dimer, with each NurA protomer binding three adjacent HerA HAS domains. Entry to NurA’s nuclease active sites requires dsDNA to pass through a 23 Å wide channel in the HerA hexamer. The structure suggests that HerA is a dsDNA translocase that feeds DNA into the NurA nuclease sites.  相似文献   

11.
We have used electron microscopy and small-angle X-ray diffraction to study the three principal structures found in the head assembly pathway of Salmonella phage P22. These structures are, in order of their appearance in the pathway: proheads, unstable filled heads (which lose their DNA and become empty heads upon isolation), and phage. In addition, we can convert proheads to an empty head-like form (the empty prohead) in vitro by treating them with 0.8% sodium dodecyl sulfate at room temperature.We have shown that proheads are composed of a shell of coat protein with a radius of 256 Å, containing within it a thick shell or a solid ball (outer radius 215 Å) of a second protein, the scaffolding protein, which does not appear in phage. The three other structures studied are all about 10% larger than proheads, having outer shells with radii of about 285 Å. Empty heads and empty proheads appear identical by small-angle X-ray diffraction to a resolution of 25 Å, both being shells about 40 Å thick. Phage appear to be made up of a protein shell identical to that in empty heads and empty proheads, within which is packed the DNA.Some details of the DNA packing are also revealed by the diffraction pattern of phage. The inter-helix distance is about 28 Å, and the hydration is about 1.5 g of water per g of DNA. Certain aspects of the pattern suggest that the DNA interacts in a specific mariner with the coat protein subunits on the inside edge of the protein shell.Thus, the prohead-to-head transformation involves, in addition to the loss of an internal scaffold and its replacement by DNA, a structural transition in the outer shell. Diffraction from features of the surface organization in these structures indicates that the clustering of the coat protein does not change radically during the expansion. The fact that the expansion occurs in vitro during the formation of empty proheads shows that it is due to the bonding properties of the coat protein alone, although it could be triggered in vivo by DNA -protein interactions. The significance of the structural transition is discussed in terms of its possible role in the control of head assembly and DNA packaging.  相似文献   

12.
B-phycoerythrin, from the unicellular red alga Porphyridium cruentum, was crystallized in the rhombohedral space group R3 with a=111.0Å and α=116.8° or A=B=189.1Å and C=60.1Å and γ=120°. Density measurements on the crystals indicate that the hexagonal unit cell can acconmodate three cylindrical molecules, 109Å in diameter and 60Å in height, each of approximately 275,000 daltons. The crystallographic symmetry of the unit cell requires at least 3-fold symmetry for the particle. However, the particle stoichiometry has been reported as (αβ)6γ and this composition is also supported by SDS gel electrophoresis on the crystalline protein. These results are discussed in light of preliminary model calculations on the quaternary structure of B-phycoerythrin.  相似文献   

13.
The crystal structure of chlorotriphenyl(quinolinium-2-carboxylato)tin(IV) monohydrate is reported. The crystals are monoclinic, space group C2/c with cell parameters a = 20.048(3) Å, b = 11.724(1) Å, c = 23.291(3) Å, ]gb = 113.42(1), Z = 8, refined to RF = 0.034 on 3331 observed reflections. The tin(IV) atom is five-coordinate, being found to three phenyl groups, the chlorine atom and an oxygen from the quinaldic acid. The geometry around the tin atom is trigonal bipyramidal, with the three phenyl groups occupying the equatorial positions, and the chlorine and quinaldic acid oxygen, the apical ones. The acidic proton of quinaldic acid has shifted position in the complex, and is bound to the heterocyclic nitrogen atom.The acid is thus coordinated in the form of a zwitterion. These trigonal bipyramidal units are linked together as dimers by pairs of water molecules, each of which hydrogen-bonds to the non-coordinated carboxylate oxygen atoms of both quinaldic acid molecules, plus the heterocyclic nitrogen atom of one quinaldic acid molecule. For complex formation with the protonated acid, the heterocyclic nitrogen should be alpha to the carboxylic acid group.  相似文献   

14.
Complex of bacteriophage M13 single-stranded DNA and gene 5 protein   总被引:19,自引:0,他引:19  
Lysates of bacteriophage M13-infected cells contain numerous unbranched filamentous structures approximately 1·1 μm long × 160 Å wide, that is, slightly longer and considerably wider than M13 virions. These structures are complexes of viral single-stranded DNA molecules with M13 gene 5 protein, a non-capsid protein required for single-stranded DNA production. All, or nearly all, of the single-stranded DNA from the infected cells and at least half to two-thirds of the gene 5 protein molecules are found as complex in the lysates. The complex contains about 1300 gene 5 protein molecules per DNA molecule but little if any of the two known capsid proteins. The complex is much less stable than virions in the presence of salt or ionic detergent solutions and in electron micrographs it appears to have a much looser and more open structure. If an excess of M13 single-stranded DNA is added to complex in a lysate, the gene 5 protein molecules from the complex redistribute onto all of the added as well as the original DNA, again suggesting a rather loose association of protein and DNA.By electron microscopy, the complex from infected cells appears to differ structurally from complex formed in vitro between purified single-stranded DNA and purified gene 5 protein. Because of this apparent structural difference and because previous experiments suggested the presence of complex in vivo, we presume that the complex which we have found in lysates of infected cells previously did exist as such inside the cells, but we have been unable to exclude that it formed during or after lysis. If it is assumed that complex does occur in vivo, the results of pulse-chase radioactive labeling experiments on infected cells can be interpreted as showing that with time the single-stranded DNA leaves complex, presumably to be matured into virions, while the gene 5 protein molecules are re-used to form more complex.  相似文献   

15.
Antibodies elicited in rabbits by chromatin and by purified histone H2B have been used to study the structure of chromatin by immunoelectron microscopy. Chromatin spread on grids reveals a structure of closely packed spherical particles with an average diameter of 104 Å, arranged either in clusters or in linear arrays of beads, some of which have a supercoil-like arrangement. No DNA strings connecting the beads could be observed. Upon antibody binding, the diameter of the particles increases up to 300 Å. This size is compatible with a model where one layer of gamma globulin molecules 110 Å long encircles a sphere of chromatin 100 Å in diameter. The presence of rabbit gamma globulins on the enlarged beads has been verified by the addition of ferritin-labeled goat anti-rabbit gamma globulins. Anti-chromatin sera which react with nonhistone proteins but not with free histones or DNA react with more than 95% of the beads; this suggests that most of the beads contain nonhistone proteins. Since the number of nonhistone proteins is large, it is improbable that each sphere contains a full complement of these proteins. We therefore suggest that the various chromatin spheres contain different types of nonhistone proteins. About 90% of the chromatin spheres reacted with antibodies to histone H2B, suggesting that most of the chromatin beads contain this type of histone.  相似文献   

16.
Structure of oxidized thioredoxin to 4 with 5 A resolution   总被引:3,自引:0,他引:3  
The structure of the oxidized form of Escherichia coli thioredoxin, space group C2, has been determined from X-ray crystallographic data, to a resolution of 4.5 Å using two heavy-atom derivatives, platinum diaminedichloride and 3-pyridyl mercuric chloride. The electron density maps show the molecular shape and the packing of the thioredoxin molecules as well as the positions of the cupric ions necessary for crystallization of thioredoxin. The shape of the thioredoxin molecule is ellipsoidal with approximate dimensions 25 Å × 34 Å × 35 Å. The two thioredoxin molecules in the asymmetric unit appear very similar. They are related by a translation vector with components (0, 0.1, 0.5) along the axis of the unit cell and not by a 2-fold rotation axis. Each of the two molecules in the asymmetric unit belongs to separate infinite layers of molecules parallel to the xy plane. The basic unit in these layers is a dimer formed by interaction of two thioredoxin molecules across the crystallographic 2-fold axis. The structural role of the cupric ions in the crystal lattice is to bridge these dimers within the layers.  相似文献   

17.
The crystal structure of sodium guanylyl-3′,5′-cytidine (GpC) nonahydrate has been determined by X-ray diffraction procedures and refined to an R value of 0.054. GpC crystallizes with four molecules per monoclinic unit cell, space group C2, with cell dimensions: a = 21.460, b = 16.297, c = 9.332 A? and β = 90.54 °. Two molecules of GpC related by the 2-fold axis of the crystal form a small segment of right-handed, anti-parallel double-helical RNA in the crystal. Guanine is paired to cytosine through three hydrogen bonds of lengths 2.91, 2.95 and 2.86 Å. The bases along each strand are heavily stacked at a distance of about 3.4 Å. The fragments form skewed flattened rods within the lattice by the inter-molecular stacking of guanines with each other and the stacking of cytosine with the guanosine Ol′atom. The sodium cations are bound only to the ionized phosphate groups in this structure and exhibit face-sharing octahedral co-ordination. The sodium cations serve to bridge the rods of GpC fragments and organize them into sheets within the crystal. There are 18 water molecules per double-helical fragment which are all part of the first co-ordination shell of nitrogen, oxygen or sodium atoms.  相似文献   

18.
The structure of the enzyme p-hydroxybenzoate hydroxylase (EC 1.14.13.2) in a complex with its substrate has been determined at a resolution of 2.5 Å. The molecular weight is 43,000 and the dimensions of one molecule are approximately 70 Å × 50 Å × 45 Å. The crystal structure contains dimers of these molecules. Approximately 16% of the residues occur in β-sheets and 26% in α-heliees. The molecule can be divided into three domains. The active site, near the isoalloxazine ring, is formed by side-chains of the three domains. The N-5 edge of the isoalloxazine ring points to p-hydroxybenzoate, which is bound in a deep cleft.  相似文献   

19.
The probable arrangement of the bacteriorhodopsin molecules in the purple membrane of Halobacterium halobium is in clusters of three, with a 3-fold axis at the centre of each cluster; the axis is at right angles to the plane of the membrane. The proposed arrangement and the results of model calculations together indicate that each protein molecule spans the entire thickness of the membrane. An earlier proposal for the structure had the protein molecules in two layers, and it was symmetric in projection onto the profile-axis. This model is now rejected since it would be difficult to account for the recently discovered function of pumping protons. There remains a discrepancy in that the calculated number of protein molecules in the unit-cell is 3.4 compared to the three expected.The X-ray diffraction patterns from dispersions of the lipids extracted from the red and purple membranes of H. halobium are described.Model calculations are reported, which are based on the bilayer profile calculated for the extracted lipids and on two simple profiles for the protein. The calculations favour a structure for the purple membrane having the lipid molecules in two layers, as in a bilayer, although there may be more of the lipid on one side of the membrane than on the other. Assuming bilayer structure, the diffraction nearest the centre of the oriented pattern suggests that the lipid molecules may be located mainly in a few discrete regions, roughly 20 Å across, between the protein molecules. An uninterrupted monolayer of the lipid on one surface of a sheet of the protein molecules gives poor agreement with the observed profile-diffraction.The X-ray diffraction pattern from the oriented membranes suggested α-helix in the bacteriorhodopsin, and this has been confirmed by recording a 1.5 Å-reflection oriented on the profile-axis. There appear to be at least two segments of α-helix, which are somewhat inclined to one another, and the two may be packed together. Prominent diffraction on the in-plane axis near 10 Å is consistent with the segments lying more or less perpendicular to the plane of the membrane.  相似文献   

20.
With the monolayer technique, values of about 99.7 Å for rabbit anti-egg albumin IgG antibody, and about 58.9 Å for Fab fragment of IgG were obtained as the thickness of the adsorbed antibody layer. As these values determined in the saturated state were confirmed, it may be reasonable to assume that they correspond approximately to the long axis of both molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号