首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李垚  张兴旺  方炎明 《植物生态学报》2016,40(11):1164-1178
小叶栎(Quercus chenii)是华东植物区系的代表树种, 具有很高的生态、经济价值。为重建冰期以来小叶栎地理分布格局的变迁历史、了解环境因子对潜在地理分布的制约机制, 为小叶栎种质资源保护和管理提供科学依据, 该研究基于55条分布记录和8个环境变量, 利用MaxEnt模型模拟小叶栎在末次盛冰期、全新世中期、现代和2070年(温室气体排放情景为典型浓度目标8.5)的潜在分布区, 利用多元环境相似度面和最不相似变量分析探讨气候变迁过程中环境异常区域和引起潜在地理分布改变的关键因素, 综合应用贡献率及置换重要值比较、Jackknife检验评估制约现代地理分布的主要因子, 采用响应曲线确定环境变量的适宜区间。研究结果表明: MaxEnt模型的预测准确度极高, 受试者工作特征曲线下的面积(AUC值)达0.9869 ± 0.0045; 现代高度适宜区在安徽南部、浙江西部、江西东北部和湖北东部; 影响小叶栎地理分布的主要气候因子为气温和降水量, 气温更重要; 最干季平均气温可能是制约小叶栎向北分布的关键因素; 末次盛冰期时, 小叶栎高度适宜区位于东海大陆架内; 全新世中期适宜分布区轮廓已与现代近似; 2070年适宜分布区向北移, 高度适宜区面积增大, 与末次盛冰期、全新世中期和现代相比, 这一时期的气候异常程度最高。气温季节变化和降水季节变化可能是引起地理分布变迁的重要气候因素。  相似文献   

2.
3.
Studies on the dispersal mechanism and source areas of pollen from hemipelagic sediments recovered from the continental slopes of the South China Sea (SCS) reveal that vegetation existed on the exposed shelves at the Last Glacial Maximum (LGM) and the latter part of the Marine Isotope Stage 3. At the low sea level stand, Artemisia-dominated grassland covered the northern continental shelf and tropical lowland rainforest and mangroves grew on the southern shelf ‘Sunda Land’. Consequently, the climate in the northern SCS must have been much colder and drier during the last glacial period compared to the present. Sunda Land experienced only a marginally lower temperature but was not drier than today. The enhanced contrast between the northern and southern parts of the SCS in vegetation and climate during the LGM may be ascribed, at least partly, to the strengthening of Winter Monsoon during the last glacial period.  相似文献   

4.
Aim We investigated the roles of lithology and climate in constraining the ranges of four co‐distributed species of Iberian saline‐habitat specialist water beetles (Ochthebius glaber, Ochthebius notabilis, Enochrus falcarius and Nebrioporus baeticus) across the late Quaternary and in shaping their geographical genetic structure. The aim was to improve our understanding of the effects of past climate changes on the biota of arid Mediterranean environments and of the relative importance of history and landscape on phylogeographical patterns. Location Iberian Peninsula, Mediterranean. Methods We combined species distribution modelling (SDM) and comparative phylogeography. We used a multi‐model inference and model‐averaging approach both for assessment of range determinants (climate and lithology) and for provision of spatially explicit estimates of the species current and Last Glacial Maximum (LGM) potential ranges. Potential LGM distributions were then contrasted with the phylogeographical and population expansion patterns as assessed using mitochondrial DNA sequence data. We also evaluated the relative importance of geographical distance, habitat resistance and historical isolation for genetic structure in a causal modelling framework. Results Lithology poses a strong constraint on the distribution of Iberian saline‐habitat specialist water beetles, with a variable, but generally moderate, additional influence by climate. The degree to which potential LGM distributions were reduced and fragmented decreased with increasing importance of lithology. These SDM‐based suitability predictions were mostly congruent with phylogeographical and population genetic patterns across the study species, with stronger geographical structure in the genetic diversity of the more temperature‐sensitive species (O. glaber and E. falcarius). Furthermore, while historical isolation was the only factor explaining genetic structure in the more temperature‐sensitive species, lithology‐controlled landscape configuration also played an important role for those species with more lithology‐determined ranges (O. notabilis and N. baeticus). Main conclusions Our data show that lithology is an important constraint on the distribution and range dynamics of endemic Iberian saline‐habitat water beetles, in interaction with climate and long‐term climate change, and overrides the latter in importance for some species. Hence, geological landscape structure and long‐term history may codetermine the overall range and the distribution of genetic lineages in endemic species with specialized edaphic requirements.  相似文献   

5.
Global vegetation changes at the time‐scale of the Earth's orbital variations (104–105 years) have been interpreted as a direct effect of consequential climatic changes, especially temperature. At mid‐ and high latitudes, the evidence from fossil data and general circulation models (GCMs) supporting this hypothesis is strong, but at low latitudes there is a major discrepancy. GCMs predict temperature changes that are less than those inferred from palaeoclimatic data, including the plant fossil record. However, changes in atmospheric CO2 concentrations can account for a high proportion of the low‐latitude vegetation change hitherto attributed to temperature change, and may thus explain the discrepancy. The implications of this finding are considerable for understanding patterns of macroevolution and ecosystem development throughout the geological record.  相似文献   

6.
殷刚  孟现勇  王浩  胡增运  孙志群 《生态学报》2017,37(9):3149-3163
干旱区植被生态系统对气候变化极为敏感,并且干旱区的植被变化研究对全球碳循环具有重要意义。然而近几十年来,中亚干旱区植被对气候变化的响应机制尚不甚明朗。利用归一化植被指数NDVI数据集和MERRA(Modern-Era Retrospective Analysis for Research and Applications)气象数据,采用经验正交函数(EOF,Empirical Orthogonal Function)和最小二乘法等方法系统分析了31a(1982-2012年)来中亚地区NDVI在不同时间尺度的时空变化特征。进一步分析和研究NDVI与气温和降水的相关性,结果表明:1982-2012年,中亚地区年NDVI总体呈现缓慢增长趋势,而1994年以后年NDVI呈现明显下降趋势,尤其在哈萨克斯坦北部草原地区下降趋势尤为突出。这可能是由于过去30年间,中亚地区降水累计量的持续减少造成的。NDVI的季节变化表明春季NDVI增长最为明显,冬季则显著下降。与平原区相比,中亚山区的NDVI值增长幅度最大,并且山区年NDVI与季节NDVI呈现显著增加趋势(P < 0.05)。中亚地区年NDVI与年降水量正相关,而年NDVI与气温变化存在弱负相关。年NDVI和气温的正相关中心在中亚南部地区,负相关中心则出现在哈萨克斯坦的西部和北部地区;NDVI和降水的相关性中心刚好与气温相反。此外,在近30年间的每年6月至9月,中亚地区NDVI与气温存在近一个月的时间延迟现象。本研究为中亚干旱区生态系统变化和中亚地区碳循环的估算提供科学依据。  相似文献   

7.
8.
9.
10.
11.
12.
13.
Aim To reconstruct the last c. 7000 years of vegetation and climate change in an unusual region of modern Great Plains grassland and scarp woodland in south‐east Colorado (USA), and to determine the late Holocene biogeography of Colorado piñon (Pinus edulis) at its easternmost extent, using a series of radiocarbon‐dated packrat (Neotoma sp.) middens. Location The West Carrizo Canyon drains the Chaquaqua Plateau, a plateau that projects into the western extent of the southern Great Plains grasslands in south‐eastern Colorado, USA. Elevations of the study sites are 1448 to 1525 m a.s.l. Today the plateau is mostly Juniperus scopulorumP. edulis woodland. Methods Plant macrofossils and pollen assemblages were analysed from 11 14C‐dated packrat middens. Ages ranged from 5990 yr bp (6839 cal. yr bp ) to 280 yr bp (485 cal. yr bp ). Results The results presented here provide information on the establishment and expansion of JuniperusP. edulis woodland at its eastern limits. The analysis of both plant macrofossils and pollen from the 11 middens documents changes in plant communities over the last 7000 years, and the establishment of P. edulis at its easternmost limit. Though very minor amounts of P. edulis pollen occur as early as the middle Holocene, plant macrofossils were only recovered in middens dating after c. 480 cal. yr bp . Main conclusions Originally, midden research suggested a late glacial refuge to the north‐east of the Carrizo Canyon site, and a middle Holocene expansion of P. edulis. Results reported here are consistent with a late Holocene expansion, here at its eastern limits, but noted elsewhere at its northern and north‐eastern limits. In general, this late Holocene expansion is consistent with pollen data from sediments in Colorado and New Mexico, and suggests that P. edulis is still expanding its range at its present extremes. This has implications for further extension of its range due to changing climatic conditions in the future.  相似文献   

14.
15.
1. Physiological experiments have indicated that the lower CO2 levels of the last glaciation (200 μmol mol?1) probably reduced plant water-use efficiency (WUE) and that they combined with increased aridity and colder temperatures to alter vegetation structure and composition at the Last Glacial Maximum (LGM). 2. The effects of low CO2 on vegetation structure were investigated using BIOME3 simulations of leaf area index (LAI), and a two-by-two factorial experimental design (modern/LGM CO2, modern/LGM climate).3. Using BIOME3, and a combination of lowered CO2 and simulated LGM climate (from the NCAR-CCM1 model), results in the introduction of additional xeric vegetation types between open woodland and closed-canopy forest along a latitudinal gradient in eastern North America.4. The simulated LAI of LGM vegetation was 25–60% lower in many regions of central and eastern United States relative to modern climate, indicating that glacial vegetation was much more open than today.5. Comparison of factorial simulations show that low atmospheric CO2 has the potential to alter vegetation structure (LAI) to a greater extent than LGM climate.6. If the magnitude of LAI reductions simulated for glacial North America were global, then low atmospheric CO2 may have promoted atmospheric warming and increased aridity, through alteration of rates of water and heat exchange with the atmosphere.  相似文献   

16.
17.
The long residence time of carbon in forests and soils means that both the current state and future behavior of the terrestrial biosphere are influenced by past variability in climate and anthropogenic land use. Over the last half‐millennium, European terrestrial ecosystems were affected by the cool temperatures of the Little Ice Age, rising CO2 concentrations, and human induced deforestation and land abandonment. To quantify the importance of these processes, we performed a series of simulations with the LPJ dynamic vegetation model driven by reconstructed climate, land use, and CO2 concentrations. Although land use change was the major control on the carbon inventory of Europe over the last 500 years, the current state of the terrestrial biosphere is largely controlled by land use change during the past century. Between 1500 and 2000, climate variability led to temporary sequestration events of up to 3 Pg, whereas increasing atmospheric CO2 concentrations during the 20th century led to an increase in carbon storage of up to 15 Pg. Anthropogenic land use caused between 25 Pg of carbon emissions and 5 Pg of uptake over the same time period, depending on the historical and spatial pattern of past land use and the timing of the reversal from deforestation to afforestation during the last two centuries. None of the currently existing anthropogenic land use change datasets adequately capture the timing of the forest transition in most European countries as recorded in historical observations. Despite considerable uncertainty, our scenarios indicate that with limited management, extant European forests have the potential to absorb between 5 and 12 Pg of carbon at the present day.  相似文献   

18.
Shifting flowering phenology with rising temperatures is occurring worldwide, but the rarity of co‐occurring long‐term observational and temperature records has hindered the evaluation of phenological responsiveness in many species and across large spatial scales. We used herbarium specimens combined with historic temperature data to examine the impact of climate change on flowering trends in 141 species collected across 116,000 km2 in north‐central North America. On average, date of maximum flowering advanced 2.4 days °C−1, although species‐specific responses varied from − 13.5 to + 7.3 days °C−1. Plant functional types exhibited distinct patterns of phenological responsiveness with significant differences between native and introduced species, among flowering seasons, and between wind‐ and biotically pollinated species. This study is the first to assess large‐scale patterns of phenological responsiveness with broad species representation and is an important step towards understanding current and future impacts of climate change on species performance and biodiversity.  相似文献   

19.
Climate and land‐use change jointly affect the future of biodiversity. Yet, biodiversity scenarios have so far concentrated on climatic effects because forecasts of land use are rarely available at appropriate spatial and thematic scales. Agent‐based models (ABMs) represent a potentially powerful but little explored tool for establishing thematically and spatially fine‐grained land‐use scenarios. Here, we use an ABM parameterized for 1,329 agents, mostly farmers, in a Central European model region, and simulate the changes to land‐use patterns resulting from their response to three scenarios of changing socio‐economic conditions and three scenarios of climate change until the mid of the century. Subsequently, we use species distribution models to, first, analyse relationships between the realized niches of 832 plant species and climatic gradients or land‐use types, respectively, and, second, to project consequent changes in potential regional ranges of these species as triggered by changes in both the altered land‐use patterns and the changing climate. We find that both drivers determine the realized niches of the studied plants, with land use having a stronger effect than any single climatic variable in the model. Nevertheless, the plants' future distributions appear much more responsive to climate than to land‐use changes because alternative future socio‐economic backgrounds have only modest impact on land‐use decisions in the model region. However, relative effects of climate and land‐use changes on biodiversity may differ drastically in other regions, especially where landscapes are still dominated by natural or semi‐natural habitat. We conclude that agent‐based modelling of land use is able to provide scenarios at scales relevant to individual species distribution and suggest that coupling ABMs with models of species' range change should be intensified to provide more realistic biodiversity forecasts.  相似文献   

20.
With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH4) emissions from wetlands and increased CH4 consumption of meadows, but might increase CH4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO2) and CH4. Nitrous oxide (N2O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号