首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate‐driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901–2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large‐scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.  相似文献   

2.
Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process‐based growth model (cenw ) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid‐range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances.  相似文献   

3.
In this study, we simulated pasture to Pinus radiata land‐use change with the Generic Decomposition And Yield (G'DAY) ecosystem model to examine mechanisms responsible for the change in soil carbon (C) under pine. We parameterized the model for paired sites in New Zealand. Our simulations successfully reproduced empirical trends in ecosystem productivity and soil inorganic nitrogen (N), and modeled an increase in soil C and a small decline in soil N after 30 years under pine. We determined the mechanisms contributing to soil C change based on an established hypothesis that attributes increases in soil C storage to three main factors: increased ecosystem N inputs relative to outputs, increased C/N ratios in plant and soil, or a shift of N from plant to soil. The mechanisms we attributed to the simulated increase in soil C under pine were increased soil C inputs through tree litterfall, and an increase in the soil C/N ratio. In the first 7 years following pine establishment, a decline in soil C was simulated; this was matched by a decline in soil N. The simulated longer‐term increase in soil C with afforestation by pine contrasts with results from published field studies, which show either a decline or no change in soil C under pine. The discrepancy between measured and simulated changes in soil C was attributed to the G'DAY model overestimating the transfer of litter C into the mineral soil.  相似文献   

4.
Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species’ geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland‐southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes.  相似文献   

5.
Responses of gas exchange and growth in Merkus pine (Pinus merkusii Jungh. et de Vriese) seedlings to changing climate were analysed for high‐ and low‐altitude sites in Thailand. A gas exchange model, based on the optimality approach, derived the effect of drought from the probability of rains. A carbon‐and nitrogen‐balance growth model applied structural regularities of a tree and a modification of functional balance between foliage and fine roots as growth‐ guiding rules. Adaptation to local climates was incorporated in the models. The simulations yielded physiologically reasonable behaviour for annual photosynthesis (A) and transpiration (E) in relation to the distributions of precipitation over the course of a year. An annual temperature increase of 2 °C and a prolonged dry season (scenario 2) reduced A by 5–11% and E by 5–8% as compared to present climate (scenario 1). Doubled CO2 concentration and the increased temperature (scenario 3) enhanced A by 56–59% and E by 14%. Simultaneously these changes (scenario 4) increased A by 41–53% and E by 1–5%. Simulated growth in scenario 1 fitted reasonably well to field data. By the age of five years, simulated total biomass (TB) and height (h) were reduced by 31–67% and 12–42%, respectively, in scenario 2 compared to scenario 1. In scenario 3, TB and h increased by 279–330% and 94–191%, and in scenario 4, by 83–241% and 55–69%, respectively. Large increases in TB and h are explained by the exponential growth phase of the young seedlings. These results suggest that climatic changes enhance growth and thus shorten the duration of the grass stage in these seedlings. However, the effects of climatic changes on growth depend strongly on how rainfall seasonality is altered in SE Asia because prolonged drought episodes may retard the fertilizing effects of the increasing CO2 concentration.  相似文献   

6.
Increased atmospheric [CO2] could theoretically lead to increased forest productivity (‘CO2 fertilization’). This mechanism was hypothesized as a possible explanation for biomass increases reported from tropical forests in the last 30+ years. We used unique long‐term records of annually measured stands (eighteen 0.5 ha plots, 10 years) and focal tree species (six species, 24 years) to assess the effects of rainfall, temperature, and atmospheric [CO2] on annual wood production in a neotropical rain forest. Our study area was a meso‐scale section (600 ha) of old‐growth Tropical Wet Forest in NE Costa Rica. Using the repeated remeasurements we directly assessed the relative effects of interannual climatic variation and increasing atmospheric [CO2] on wood production. A remarkably simple two‐factor model explained 91% of the interannual variance in stand‐level tree growth; the statistically independent factors were total dry season rainfall (positive effect, r2=0.85) and night‐time temperature (negative effect, r2=0.42). Stand‐level tree mortality increased significantly with night‐time temperature. After accounting for dry season rainfall and night‐time temperature, there was no effect of annual [CO2] on tree growth in either the stand or focal species data. Tree growth in this Tropical Wet Forest was surprisingly sensitive to the current range of dry season conditions and to variations in mean annual night‐time temperature of 1–2°. Our results suggest that wood production in the lowland rainforests of NE Costa Rica (and by extension in other tropical regions) may be severely reduced in future climates that are only slightly drier and/or warmer.  相似文献   

7.
Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of the geographical distribution of a species, where range expansions or contractions may occur. Current demographical status at geographical range limits can help us to predict population trends and their implications for the future distribution of the species. Thus, understanding the comparability of demographical patterns occurring along both altitudinal and latitudinal gradients would be highly informative. In this study, we analyse the differences in the demography of two woody species through altitudinal gradients at their southernmost distribution limit and the consistency of demographical patterns at the treeline across a latitudinal gradient covering the complete distribution range. We focus on Pinus sylvestris and Juniperus communis, assessing their demographical structure (density, age and mortality rate), growth, reproduction investment and damage from herbivory on 53 populations covering the upper, central and lower altitudes as well as the treeline at central latitude and northernmost and southernmost latitudinal distribution limits. For both species, populations at the lowermost altitude presented older age structure, higher mortality, decreased growth and lower reproduction when compared to the upper limit, indicating higher fitness at the treeline. This trend at the treeline was generally maintained through the latitudinal gradient, but with a decreased growth at the northern edge for both species and lower reproduction for P. sylvestris. However, altitudinal and latitudinal transects are not directly comparable as factors other than climate, including herbivore pressure or human management, must be taken into account if we are to understand how to infer latitudinal processes from altitudinal data.  相似文献   

8.
Continental boundary currents are projected to be altered under future scenarios of climate change. As these currents often influence dispersal and connectivity among populations of many marine organisms, changes to boundary currents may have dramatic implications for population persistence. Networks of marine protected areas (MPAs) often aim to maintain connectivity, but anticipation of the scale and extent of climatic impacts on connectivity are required to achieve this critical conservation goal in a future of climate change. For two key marine species (kelp and sea urchins), we use oceanographic modelling to predict how continental boundary currents are likely to change connectivity among a network of MPAs spanning over 1000 km of coastline off the coast of eastern Australia. Overall change in predicted connectivity among pairs of MPAs within the network did not change significantly over and above temporal variation within climatic scenarios, highlighting the need for future studies to incorporate temporal variation in dispersal to robustly anticipate likely change. However, the intricacies of connectivity between different pairs of MPAs were noteworthy. For kelp, poleward connectivity among pairs of MPAs tended to increase in the future, whereas equatorward connectivity tended to decrease. In contrast, for sea urchins, connectivity among pairs of MPAs generally decreased in both directions. Self‐seeding within higher‐latitude MPAs tended to increase, and the role of low‐latitude MPAs as a sink for urchins changed significantly in contrasting ways. These projected changes have the potential to alter important genetic parameters with implications for adaptation and ecosystem vulnerability to climate change. Considering such changes, in the context of managing and designing MPA networks, may ensure that conservation goals are achieved into the future.  相似文献   

9.
利用滇西地区两个不同海拔采样点的云南松树轮样本,建立树轮宽度标准化年表,研究其径向生长对气候和水文要素的响应。结果表明:滇西云南松径向生长主要受降水量、气温和径流量的影响,其中高海拔(2413.3 m)云南松径向生长受夏季高温的制约和季风季节径流量影响,而低海拔(1062.6 m)云南松径向生长受生长季的降水量和全年径流量影响。滇西高海拔云南松径向生长对气温变化的响应受温度阈值影响表现出不稳定性;低海拔云南松径向生长对降水量和径流量的响应,在20世纪80年代均受到东亚夏季风的减弱而出现波动。滇西不同海拔云南松径向生长与亚洲夏季风活动及厄尔尼诺存在联系。  相似文献   

10.
Increased below-ground carbon allocation in forest ecosystems is a likely consequence of rising atmospheric CO2 concentration. If this results in changes to fine root growth, turnover and distribution long-term soil carbon cycling and storage could be altered. Bi-weekly measurements were made to determine the dynamics and distribution of fine roots (< 1 mm diameter) for Pinus radiata trees growing at ambient (350 μmol mol–1) and elevated (650 μmol mol–1) CO2 concentration in large open-top chambers. Measurements were made using minirhizotrons installed horizontally at depths of 0.1, 0.3, 0.5 and 0.9 m. During the first year, at a depth of 0.3 m, the increase in relative growth rate of roots occurred 6 weeks earlier in the elevated CO2 treatment and the maximum rate was reached 10 weeks earlier than for trees in the ambient treatment. After 2 years, cumulative fine root growth (Pt) was 36% greater for trees growing at elevated CO2 than at ambient CO2 concentration, although this difference was not significant. A model of root growth driven by daily soil temperature accounted for between 43 and 99% of root growth variability. Total root loss (Lt) was 9% in the ambient and 14% in the elevated CO2 treatment, although this difference was not significant. Root loss was greatest at 0.3 m. In the first year, 62% of fine roots grown between mid-summer and late-autumn disappeared within a year in the elevated CO2 treatment, but only 18% in the ambient CO2 treatment (P < 0.01). An exponential model relating Lt to time accounted for between 74 and 99% of the variability. Root cohort half-lives were 951 d for the ambient and 333 d for the elevated treatment. Root length density decreased exponentially with depth in both treatments, but relatively more fine roots grown in the elevated CO2 treatment tended to occur deeper in the soil profile.  相似文献   

11.
Kelp forests dominated by species of Laminariales are globally recognized as key habitats on subtidal temperate rocky reefs. Forests characterized by fucalean seaweed, in contrast, receive relatively less attention despite being abundant, ubiquitous, and ecologically important. Here, we review information on subtidal fucalean taxa of Australia's Great Southern Reef, with a focus on the three most abundant and widely distributed genera (Phyllospora, Scytothalia, and Sargassum) to reveal the functionally unique role of fucoids in temperate reef ecology. Fucalean species span the entire temperate coastline of Australia (~71,000 km2) and play an important role in supporting subtidal temperate biodiversity and economic values on rocky reefs as well as in adjacent habitats. Climatic and anthropogenic stressors have precipitated significant range retractions and declines in many fucoids, with critical implications for associated assemblages. Such losses are persistent and unlikely to be reversed naturally due to the life history of these species and colonization of competitors and grazers following loss. Active restoration is proving successful in bringing back some fucoid species (Phyllospora comosa) lost from urban shores and will complement other passive and active forms of conservation. Fucalean forests play a unique role on subtidal temperate reefs globally, especially in Australia, but are comparatively understudied. Addressing this knowledge gap will be critical for understanding, predicting, and mitigating extant and future loss of these underwater forests and the valuable ecosystem services they support.  相似文献   

12.
Elevated atmospheric CO2 concentrations ([CO2]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom‐up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO2] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO2] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO2 responses within models should be prioritized.  相似文献   

13.
Responses of photosynthesis (A) to intercellular CO2 concentration (ci) in 2-year-old Pinus radiata D. Don seedlings were measured at a range of temperatures in order to parametrize a biophysical model of leaf photosynthesis. Increasing leaf temperature from 8 to 30°C caused a 4-fold increase in Vcmax, the maximum rate of carboxylation (10.7–43.3 μol m?2 s?1 and a 3-fold increase in Jmax, the maximum electron transport rate (20.5–60.2 μmol m ?2 s?1). The temperature optimum for Jmax was lower than that for Vcmax, causing a decline in the ratio Jmax:Vcmax from 2.0 to 1.4 as leaf temperature increased from 8 to 30°C. To determine the response of photosynthesis to leaf nitrogen concentration, additional measurements were made on seedlings grown under four nitrogen treatments. Foliar N concentrations varied between 0.36 and 1.27 mol kg?1, and there were linear relationships between N concentration and both Vcmax and Jmax. Measurements made throughout the crown of a plantation forest tree, where foliar N concentrations varied from 0.83 mol kg?1 near the base to 1.54 mol kg?1 near the leader, yielded similar relationships. These results will be useful in scaling carbon assimilation models from leaves to canopies.  相似文献   

14.
For most studies involving the response of plants to future concentrations of atmospheric carbon dioxide (CO2), a current concentration of 360–370 μatm is assumed, based on recent data obtained from the Mauna Loa observatory. In the present study, average seasonal diurnal values of ambient CO2 obtained at ground level from three global locations (Australia, Japan and the USA) indicated that the average CO2 (at canopy height) can vary from over 500 μatm at night to 350 μatm during the day with average 24‐h values ranging from 390 to 465 μatm. At all sites sampled, ambient CO2 rose to a maximum value during the pre‐dawn period (03.00–06.00 hours); at sunrise, CO2 remained elevated for several hours before declining to a steady‐state concentration between 350 and 400 μatm by mid‐morning (08.00–10.00 hours). Responses of plant growth to simulations of the observed variation of in situ CO2 were compared to growth at a constant CO2 concentration in controlled environment chambers. Three diurnal patterns were used (constant 370 μatm CO2, constant 370 during the day (07.00–19.00 hours), high CO2 (500 μatm) at night; or, high CO2 (500 μatm) at night and during the early morning (07.00–09.00 hours) decreasing to 370 μatm by 10.00 hours). Three plant species ? soybean (Glycine max, L (Merr.), velvetleaf (Abutilon theophrasti L.) and tomato (Lycopersicon esculentum L.) ? were grown in each of these environments. For soybean, high night‐time CO2 resulted in a significant increase in net assimilation rate (NAR), plant growth, leaf area and biomass relative to a constant ambient value of CO2 by 29 days after sowing. Significant increases in NAR for all three species, and significant increases in leaf area, growth and total biomass for two of the three C3 species tested (velvetleaf and soybean) were also observed after 29 days post sowing for the high night/early morning diurnal pattern of CO2. Data from these experiments suggest that the ambient CO2 concentration experienced by some plants is higher than the Mauna Loa average, and that growth of some agricultural species at in situ CO2 levels can differ significantly from the constant CO2 value used as a control in many CO2 experiments. This suggests that a reassessment of control conditions used to quantify the response of plants to future, elevated CO2 may be required.  相似文献   

15.
This study investigated the impact of predicted future climatic and atmospheric conditions on soil respiration (RS) in a Danish Calluna‐Deschampsia‐heathland. A fully factorial in situ experiment with treatments of elevated atmospheric CO2 (+130 ppm), raised soil temperature (+0.4 °C) and extended summer drought (5–8% precipitation exclusion) was established in 2005. The average RS, observed in the control over 3 years of measurements (1.7 μmol CO2 m?2 sec?1), increased 38% under elevated CO2, irrespective of combination with the drought or temperature treatments. In contrast, extended summer drought decreased RS by 14%, while elevated soil temperature did not affect RS overall. A significant interaction between elevated temperature and drought resulted in further reduction of RS when these treatments were combined. A detailed analysis of short‐term RS dynamics associated with drought periods showed that RS was reduced by ~50% and was strongly correlated with soil moisture during these events. Recovery of RS to pre‐drought levels occurred within 2 weeks of rewetting; however, unexpected drought effects were observed several months after summer drought treatment in 2 of the 3 years, possibly due to reduced plant growth or changes in soil water holding capacity. An empirical model that predicts RS from soil temperature, soil moisture and plant biomass was developed and accounted for 55% of the observed variability in RS. The model predicted annual sums of RS in 2006 and 2007, in the control, were 672 and 719 g C m?2 y?1, respectively. For the full treatment combination, i.e. the future climate scenario, the model predicted that soil respiratory C losses would increase by ~21% (140–150 g C m?2 y?1). Therefore, in the future climate, stimulation of C storage in plant biomass and litter must be in excess of 21% for this ecosystem to not suffer a reduction in net ecosystem exchange.  相似文献   

16.
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi‐year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model‐based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well‐controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.  相似文献   

17.
The n‐alkane composition in the leaf cuticular waxes of natural populations of Bosnian pine (Pinus heldreichii), Austrian pine (P. nigra), and Macedonian pine (P. peuce) was compared for the first time. The range of n‐alkanes was wider in P. nigra (C16 – C33) than in P. heldreichii and P. peuce (C18 – C33). Species also diverged in abundance and range of dominant n‐alkanes (P. heldreichii: C23, C27, and C25; P. nigra: C25, C27, C29, and C23; P. peuce: C29, C25, C27, and C23). Multivariate statistical analyses (PCA, DA, and CA) generally pointed out separation of populations of P. nigra from populations of P. heldreichii and P. peuce (which were, to a greater or lesser extent, separated too). However, position of these species on the basis of n‐alkane composition was in accordance neither with infrageneric classification nor with recent molecular and terpene investigations.  相似文献   

18.
Comparative analysis of terpene diversity and differentiation of relict pines Pinus heldreichii, Pnigra, and P. peuce from the central Balkans was performed at the population level. Multivariate statistical analyses showed that the composition of needle terpenes reflects clear divergence among the pine species from different subgenera: P. peuce (subgenus Strobus) vs. P. nigra and P. heldreichii (subgenus Pinus). In addition, despite the described morphological similarities and the fact that P. nigra and P. heldreichii may spontaneously hybridize, our results indicated differentiation of their populations naturally growing in the same area. In accordance with recently proposed concept of ‘flavonic evolution’ in the genus Pinus, we assumed that the terpene profile of soft pine P. peuce, defined by high amounts of six monoterpenes, is more basal than those of hard pines P. nigra and P. heldreichii, which were characterized by high content levels of mainly sesquiterpenes. In order to establish precise positions of P. heldreichii, P. nigra and P. peuce within the taxonomic and phylogenetic tree, as well as develop suitable conservation strategies and future breeding efforts, it is necessary to perform additional morphological, biochemical, and genetic studies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号