首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short‐term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.  相似文献   

2.
3.
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin‐based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin‐based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.  相似文献   

4.
Ecogeographical rules linking climate to morphology have gained renewed interest because of climate change. Yet few studies have evaluated to what extent geographical trends ascribed to these rules have a genetic, rather than environmentally determined, basis. This applies especially to Allen's rule, which states that the relative extremity length decreases with increasing latitude. We studied leg length in the common frog (Rana temporaria) along a 1500 km latitudinal gradient utilizing wild and common garden data. In the wild, the body size-corrected femur and tibia lengths did not conform to Allen's rule but peaked at mid-latitudes. However, the ratio of femur to tibia length increased in the north, and the common garden data revealed a genetic cline consistent with Allen's rule in some trait and treatment combinations. While selection may have shortened the leg length in the north, the genetic trend seems to be partially masked by environmental effects.  相似文献   

5.
6.
Aim One of the longest recognized patterns in macroecology, Bergmann’s rule, describes the tendency for homeothermic animals to have larger body sizes in cooler climates than their phylogenetic relatives in warmer climates. Here we provide an integrative process‐based explanation for Bergmann’s rule at the global scale for the mammal order Carnivora. Location Global. Methods Our database comprises the body sizes of 209 species of extant terrestrial Carnivora, which were analysed using phylogenetic autocorrelation and phylogenetic eigenvector regression. The interspecific variation in body size was partitioned into phylogenetic (P) and specific (S) components, and mean P‐ and S‐components across species were correlated with environmental variables and human occupation both globally and for regions glaciated or not during the last Ice Age. Results Three‐quarters of the variation in body size can be explained by phylogenetic relationships among species, and the geographical pattern of mean values of the P‐component is the opposite of the pattern predicted by Bergmann’s rule. Partial regression revealed that at least 43% of global variation in the mean phylogenetic component is explained by current environmental factors. In contrast, the mean S‐component of body size shows large positive deviations from ancestors across the Holarctic, and negative deviations in southern South America, the Sahara Desert, and tropical Asia. There is a moderately strong relationship between the human footprint and body size in glaciated regions, explaining 19% of the variance of the mean P‐component. The relationship with the human footprint and the P‐component is much weaker in the rest of the world, and there is no relationship between human footprint and S‐component in any region. Main conclusions Bergmannian clines are stronger at higher latitudes in the Northern Hemisphere because of the continuous alternation of glacial–interglacial cycles throughout the late Pliocene and Pleistocene, which generated increased species turnover, differential colonization and more intense adaptive processes soon after glaciated areas became exposed. Our analyses provide a unified explanation for an adaptive Bergmann’s rule within species and for an interspecific trend towards larger body sizes in assemblages resulting from historical changes in climate and contemporary human impacts.  相似文献   

7.
Aim The patterns and causes of ecogeographical body size variation in ectotherms remain controversial. In amphibians, recent genetic studies are leading to the discovery of many cryptic species. We analysed the relationships between body size and climate for a salamander (Salamandrina) that was recently separated into two sibling species, to evaluate how ignoring interspecific and intraspecific genetic structure may affect the conclusions of ecogeographical studies. We also considered the potential effects of factors acting at a local scale. Location Thirty‐four populations covering the whole range of Salamandrina, which is endemic to peninsular Italy. Methods We pooled original data and data from the literature to obtain information on the snout–vent length (SVL) of 3850 Salamandrina females; we obtained high‐resolution climatic data from the sampled localities. We used an information‐theoretic approach to evaluate the roles of climate, genetic features (mitochondrial haplogroup identity) and characteristics of aquatic oviposition sites. We repeated our analyses three times: in the first analysis we ignored genetic data on intraspecific and interspecific variation; in the second one we considered the recently discovered differences between the two sibling species; in the third one we included information on intraspecific genetic structure within Salamandrina perspicillata (for Salamandrina terdigitata the sample size was too small to perform intraspecific analyses). Results If genetic information was ignored, our analysis suggested the existence of a relationship between SVL and climatic variables, with populations of large body size in areas with high precipitation and high thermal range. If species identity was included in the analysis, the role of climatic features was much weaker. When intraspecific genetic differences were also considered, no climatic feature had an effect. In all analyses, local factors were important and explained a large proportion of the variation; populations spawning in still water had a larger body size. Main conclusions An imperfect knowledge of species boundaries, or overlooking the intraspecific genetic variation can strongly affect the results of analyses of body size variation. Furthermore, local factors can be more important than the large‐scale parameters traditionally considered, particularly in species with a small range.  相似文献   

8.
Geographic variation in body size is common within many animal species. The causes of this pattern, however, remain largely unexplored in most vertebrate groups. Bats are widely distributed globally owing to their ability of powered flight. Most bat species encounter a variety of climatic conditions across their distribution range, making them an ideal taxon for the study of ecogeographic patterns in body size. Here, we used adult least horseshoe bats, Rhinolophus pusillus, to test whether geographic variation in body size was determined by heat conservation, heat dissipation, climatic seasonality, or primary productivity. We measured body mass and head-body length for 246 adult bats from 12 allopatric colonies in China. We quantified the ecological conditions inhabited by each colony, including mean maximum temperature of the warmest month, mean minimum temperature of the coldest month, temperature seasonality, precipitation seasonality, and annual net primary productivity (ANPP). Body mass and head-body length, 2 of the most reliable indicators of body size, exhibited marked differences between colonies. After controlling for spatial autocorrelation, the mean minimum temperature of the coldest month explained most of the variation in body size among colonies, regardless of sex. The mean maximum temperature, climatic seasonality, and ANPP had limited power in predicting body size of males or females in comparison with mean minimum temperature. These results support the heat conservation hypothesis and suggest adaptive responses of body size to cold climates in cave-dwelling bats.  相似文献   

9.
Variations in species morphology and life‐history traits strongly correlate with geographic and climatic characteristics. Most studies on morphological variations in animals focus on ectotherms distributed on a large geographic scale across latitudinal and/or altitudinal gradient. However, the morphological variations of spiders living in the same habitats across different seasons have not been reported. In this study, we used the wolf spider, Pardosa astrigera, as a model to determine seasonal differences in adult body size, melanism, fecundity, and egg diameter both in the overwintering and the first generation for 2010 and 2016. The results showed that in 2010, both females and males of the overwintering generation were significantly darker than the first generation. Moreover, the overwintering females were markedly larger and produced more and bigger eggs than the first generation in both 2010 and 2016. Considering the overwintering P. astrigera experiencing low temperature and/or desiccation stress, these results suggest that substantially darker and larger body of the overwintering generation is adaptive to adverse conditions.  相似文献   

10.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

11.
Abstract: Body size is a common focus of macroevolutionary, macroecological and palaeontological investigations. Here, we document body‐size evolution in 19 species‐level ostracod lineages from the deep Indian Ocean (Deep Sea Drilling Program Site 253) over the past 40 myr. Body‐size trajectories vary across taxa and time intervals, but most lineages (16/19) show net gains in body size. Because many modern ostracod taxa are larger in colder parts of their geographical range, we compared the timing and magnitude of these size changes to established Cenozoic deep‐water cooling patterns confirmed through δ18O measurements of benthic foraminifera in the samples studied. These data show a significant negative correlation between size changes and temperature changes (ostracods get larger as temperatures get colder), and that systematic size increases only occur during intervals of sustained cooling. In addition, statistical support for an explicit temperature‐tracking model exceeds that of purely directional evolution. We argue that this Cope’s Rule pattern is driven by secular changes in the environment, rather than any universal or intrinsic advantages to larger body sizes, and we note some difficulties in the attempts to link Cope’s Rule to observations made within a single generation.  相似文献   

12.
The climate is often evoked to explain broad‐scale clines of body size, yet its involvement in the processes that generate size inequality in the two sexes (sexual size dimorphism) remains elusive. Here, we analyse climatic clines of sexual size dimorphism along a wide elevation gradient (i) among grasshopper species in a phylogenetically controlled scenario and (ii) within species differing in distribution and cold tolerance, to highlight patterns generated at different time scales, mainly evolutionary (among species or higher taxa) and ontogenetic or microevolutionary (within species). At the interspecific level, grasshoppers were slightly smaller and less dimorphic at high elevations. These clines were associated with gradients of precipitation and sun exposure, which are likely indicators of other factors that directly exert selective pressures, such as resource availability and conditions for effective thermoregulation. Within species, we found a positive effect of temperature and a negative effect of elevation on body size, especially on condition‐dependent measures of body size (total body length rather than hind femur length) and in species inhabiting the highest elevations. In spite of a certain degree of species‐specific variation, females tended to adjust their body size more often than males, suggesting that body size in females can evolve faster among species and can be more plastic or dependent on nutritional conditions within species living in adverse climates. Natural selection on female body size may therefore prevail over sexual selection on male body size in alpine environments, and abiotic factors may trigger consistent phenotypic patterns across taxonomic scales.  相似文献   

13.
14.
This study tries to unveil the contribution of climatic shift in shaping the extreme body size diversity in terrestrial isopods (Oniscidea). Trying to explain size variation at an interspecific level, we test five hypotheses: (1) Bergmann's Rule and the temperature‐size rule postulate large size in cold areas; (2) The metabolic cold adaptation theory postulates small animal sizes in cold environments; (3) The primary productivity hypothesis predicts size increase in resource‐rich areas; (4) The aridity resistance hypothesis predicts large size in arid regions; and (5). The acidosis hypothesis predicts smaller size with decreasing soil pH. Globally, Bergmann's rule and the aridity hypothesis are weakly supported. Among families and genera, results are variable and idiosyncratic. Conglobating species sizes provide weak support for the acidosis hypothesis. Overall, size is strongly affected by familial affiliation. Isopod size evolution seems to be mainly affected by phylogenetically constrained life‐history traits.  相似文献   

15.
Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad ( Pelobates cultripes ) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern observed in adult body size. Larvae from eight populations were raised in a common garden experiment at two different larval densities that allow to differentiate whether population divergence was genetically based or was simply a reflection of environmental variation and, in addition, whether this population divergence was modulated by differing crowding larval environments. Larger adult size populations had higher larval growth rates, attaining larger sizes at metamorphosis, and exhibited higher survival than smaller-sized populations at both densities, although accentuated at a low larval density. These population differences appeared to be consistent once embryo size variation was controlled for, suggesting that this phenotypic divergence is not due to maternal effects. Our results suggest considerable genetic differentiation in metamorphic traits that parallels and may be a causal determinant of geographic variation in adult body size.  相似文献   

16.
We examined the geographical pattern in growth and adult body size among 14 populations of Swedish moose (Alces alces) using data from 4,294 moose (1.5 years old) killed during the hunting season in 1989–1992. In both sexes, adult body mass was significantly positively correlated with latitude. Moose in northern populations had a 15–20% larger adult body mass than moose in the south. Juvenile body mass was correlated with neither latitude nor adult body mass. Thus, variation in time (years) and rate of body growth after the juvenile stage were responsible for most of the variation in adult body mass among populations. Moose in northern populations grew for approximately 2 more years of life than southern moose. In contrast to adult body mass, skeletal size (measured as jawbone length) was not correlated with latitude, suggesting that variation in adult body mass was primarily due to differences in fat reserves. Discrimination between population characteristics, such as moose density, climate, and the amount of browse available to moose, showed climatic harshness to be the most important variable explaining geographical variation in body mass among populations. The results support the notion that in mammals body size increases with latitude in accordance with Bergmann's rule. We conclude that (1) variation in patterns of growth after the juvenile stage is the main cause of the latitudinal trend in adult body size in moose, and (2) climatic conditions are a more important factor than population density and availability of food in explaining geographical variation in growth patterns and adult body mass between populations of Swedish moose.  相似文献   

17.
Aim  To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation.
Location  Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection.
Methods  Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites.
Results  Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions.
Main conclusions  The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.  相似文献   

18.
19.
Large‐scale patterns of body size variation are described by well‐known generalizations such as Bergmann’s rule; the generality and underlying causes of these patterns have been much debated. Intraspecific extension of this rule was tested in various ectotherms, and evidence was found for both Bergmann and converse Bergmann clines. In this study, we explored spatial patterns of variation in a widespread amphibian, the Common toad (Bufo bufo), along a 2240 km latitudinal gradient across Europe. We tested for covariation of adult body size, age and growth parameters with latitude, altitude, length of activity period and mean temperature during this period using both original and literature data. We selected 13 European populations, representing a latitudinal range from 43 to 63°N and altitudinal range from 15 to 1850 m a.s.l. The length of activity period (12–33 weeks) and Tmean (6.6–15.6°C) significantly decreased as latitude and altitude of these populations increased. Mean body size decreased as latitude increased (not with altitude), and increased with Tmean (not with length of activity period). Mean and minimal adult age increased with latitude and altitude, longevity increased with altitude only. Age increased as length of activity period decreased (not with Tmean). The growth coefficient (0.32–0.92 in males, 0.18–0.74 in females, available for six populations) decreased as altitude increased, and increased as both length of activity period and Tmean increased; latitudinal trend was non‐significant. Our analysis shows that B. bufo clearly exhibited a converse Bergmann cline along latitudinal gradient, but not along altitudinal gradient; the main effect of elevation was on age. The effects of ecological conditions also differed: body size increased with Tmean, while age parameters were related to the length of activity period. This study highlights that, to identify causal factors underlying general ecogeographical rules, we have to take into account different phases of the life cycle, co‐variation among life history traits and ecological factors acting on each of these traits. In amphibians with complex life cycles, lack of appropriate demographical or ecological data may affect our understanding of the variety of observed body size patterns.  相似文献   

20.
亚洲玉米螟体重和体型的地理变异   总被引:3,自引:0,他引:3  
为探明亚洲玉米螟Ostrinia furnacalis体重和体型地理变异,我们详细比较了来自4个不同地理种群(海南乐东18.8°N, 109.2°E),广西阳朔24.8°N, 110.5°E),江西南昌28.8°N, 115.9°E)和河北廊坊39.5°N, 116.7°E))亚洲玉米螟的体重、体型大小及其与采集地纬度的关系。结果表明:不同地理种群的亚洲玉米螟卵重随纬度的升高而逐渐增大,符合贝格曼法则(Bergmann’s law), 而雌雄蛹重及成虫体长、后足腿节长和前翅长均随纬度的升高而逐渐减小, 符合反贝格曼法则(Converse Bergmann’s law)。雌虫的前翅显著长于雄虫, 其性体型二型性符合任希法则(Rensch’s rule),即在雌虫体型较大的种群中,雄虫前翅比雌虫前翅增长幅度相对较大。本文结果进一步揭示了即使在同一种类昆虫中,其各个虫态体重和体型的地理变异也可能不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号