首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycosyltransferase family 21 (GT21) includes both enzymes of eukaryotic and prokaryotic organisms. Many of the eukaryotic enzymes from animal, plant, and fungal origin have been characterized as uridine diphosphoglucose (UDP-Glc):ceramide glucosyltransferases (glucosylceramide synthases [Gcs], EC 2.4.1.80). As the acceptor molecule ceramide is not present in most bacteria, the enzymatic specificities and functions of the corresponding bacterial glycosyltransferases remain elusive. In this study, we investigated the homologous and heterologous expression of GT21 enzymes from Agrobacterium tumefaciens and Mesorhizobium loti in A. tumefaciens, Escherichia coli, and the yeast Pichia pastoris. Glycolipid analyses of the transgenic organisms revealed that the bacterial glycosyltransferases are involved in the synthesis of mono-, di- and even tri-glycosylated glycolipids. As products resulting from their activity, we identified 1,2-diacyl-3-(O-beta-D-galacto-pyranosyl)-sn-glycerol, 1,2-diacyl-3-(O-beta-D-gluco-pyranosyl)-sn-glycerol as well as higher glycosylated lipids such as 1,2-diacyl-3-[O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol, 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol, 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->6)-O-beta-D-gluco-pyranosyl]-sn-glycerol, and the deviatingly linked diglycosyldiacylglycerol 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->3)-O-beta-D-galacto-pyranosyl]-sn-glycerol. From a mixture of triglycosyldiacylglycerols, 1,2-diacyl-3-[O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol could be separated in a pure form. In vitro enzyme assays showed that the glycosyltransferase from A. tumefaciens favours uridine diphosphogalactose (UDP-Gal) over UDP-Glc. In conclusion, the bacterial GT21 enzymes differ from the eukaryotic ceramide glucosyltransferases by the successive transfer of up to three galactosyl and glucosyl moieties to diacylglycerol.  相似文献   

2.
Sterol glucosides, typical membrane-bound lipids of many eukaryotes, are biosynthesized by a UDP-glucose:sterol glucosyltransferase (EC 2. 4.1.173). We cloned genes from three different yeasts and from Dictyostelium discoideum, the deduced amino acid sequences of which all showed similarities with plant sterol glucosyltransferases (Ugt80A1, Ugt80A2). These genes from Saccharomyces cerevisiae (UGT51 = YLR189C), Pichia pastoris (UGT51B1), Candida albicans (UGT51C1), and Dictyostelium discoideum (ugt52) were expressed in Escherichia coli. In vitro enzyme assays with cell-free extracts of the transgenic E. coli strains showed that the genes encode UDP-glucose:sterol glucosyltransferases which can use different sterols such as cholesterol, sitosterol, and ergosterol as sugar acceptors. An S. cerevisiae null mutant of UGT51 had lost its ability to synthesize sterol glucoside but exhibited normal growth under various culture conditions. Expression of either UGT51 or UGT51B1 in this null mutant under the control of a galactose-induced promoter restored sterol glucoside synthesis in vitro. Lipid extracts of these cells contained a novel glycolipid. This lipid was purified and identified as ergosterol-beta-D-glucopyranoside by nuclear magnetic resonance spectroscopy. These data prove that the cloned genes encode sterol-beta-D-glucosyltransferases and that sterol glucoside synthesis is an inherent feature of eukaryotic microorganisms.  相似文献   

3.
Synthesis of egonol derivatives, 5-(3'-chloropropyl)-7-methoxy-2-(3',4'-methylenedioxyphenyl)benzofuran 1, 5-(3'-bromopropyl)-7-methoxy-2-(3',4'-methylenedioxyphenyl)benzofuran 2, 3-[2-(1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propanal 3, 5-(3'-iodopropyl)-7-methoxy-2-(3',4'-methylenedioxyphenyl)benzofuran 4, 5-[3-(3'-bromopropyloxy) propyl]-7-methoxy-2-(3',4'-methylenedioxyphenyl)benzofuran 5, 3-[2-(1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propylmethanoate 6, 3-[2-(1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propyloleate 7, 5-[3'-hydroxypropyl]-6-bromo-7-methoxy-2-(3',4'-methylenedioxyphenyl)benzofuran 8, 4-[2-(1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]butanenitrile 9, 3-[2-(1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl]propylbenzoate 10, 5-[3'-hydroxypropyl]-7-methoxy-3-nitro-2-(3',4'-methylenedioxyphenyl)benzofuran 11 and their antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli are reported. The starting material egonol 5-[3'-(hydroxy)propyl]-7-methoxy-2-(3', 4'methylenedioxyphenyl)benzofuran was isolated from seeds of Styrax officinalis L. The structural elucidication of these compounds (1-11) was established using 1D ((1)H, (13)C), 2D NMR (HMBC, HMQC, COSY) and LCMS spectroscopic data. While egonol and some synthesised new compounds show similar antibacterial activity and MIC values against S. aureus, B. subtilis, C. albicans and E. coli, other new derivatives show different activity against S. aureus, B. subtilis, C. albicans and E. coli.  相似文献   

4.
By use of pro-dual-drug concept the synthesis of 6-beta-[(R)-2-(clavaminio-9-N-yl)-2-(4-hydroxyphenylacetamido)]penicillanic acid (10), 6-beta-[(R)-2-(amino)-2-(4-(clavulano-9-O-yl)phenylacetamido)]penicillanic acid (13), (Z)-4-[2-(amoxycillin-4-O-yl)ethylidene]-2-(clavulano-9-O-yl)-3-methoxy-Delta(alpha,beta)-butenolide (19), and 3-[(amoxicillin-4-O-yl)methyl]-7-(phenoxyacetamido)-(1-oxo)-3-cephem-4-carboxylic acid (23) was accomplished. Unlike penicillin G, ampicillin, or amoxicillin, these four heretofore undescribed compounds 10, 13, 19, and 23 showed notable activity against beta-lactamase (betaL) producing microorganisms, Staphylococcus aureus A9606, S. aureus A15091, S. aureus A20309, S. aureus 95, Escherichia coli A9675, E. coli A21223, E. coli 27C7, Pseudomonas aeruginosa 18S-H, and Klebsiella pneumoniae A20634 TEM. In comparison with amoxicillin (9), alpha-amino-substituted compound 10 and butenolide derivative 19 showed a broadened spectrum of antibacterial activity; yet they were found to be less active than 13 and 23. Like clavulanic acid (7) or cephalosporin-1-oxide (21), the newly synthesized compounds 10, 13, 15, 16, 19, or 23 functioned as potent inhibitors of various bacterial betaLs.  相似文献   

5.
A new steroidal saponin was isolated from the leaves of Agave shrevei Gentry. Its structure was established as 26-(beta-D-glucopyranosyloxy)-22-methoxy-3-(O-beta-D-glucopyranosyl-(1-->2)O-[O-beta-D-glucopyranosyl-(1-->4)-O-[O-beta-D-glucopyranosyl-(1-->6)]-O-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranosyl]oxy)-(3beta,5alpha,25R)-furostane. The structural identification was performed using detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques (COSY, HETCOR, and COLOC) and chemical conversions. The steroidal saponin showed absence of haemolytic effects in the in vitro assay, but demonstrated a significant inhibition of the capillary permeability activity.  相似文献   

6.
To investigate the relationship between antimicrobial activities and the molecular structures of nickel(II) complexes with thiosemicarbazone and semicarbazone ligands, nickel(II) complexes with ligands Hmtsc, Hatsc, Hasc and H2dmtsc, were prepared and characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies, magnetic susceptibility measurements, UV-Vis absorption spectra, TG/DTA and single-crystal X-ray analysis. Their antimicrobial activities were evaluated by the MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 4-coordinate, diamagnetic nickel(II) complexes showed antimicrobial activities which were different from those of free ligands or the starting nickel(II) compounds; [Ni(mtsc)(OAc)] 1 showed selective and effective antimicrobial activities against two Gram-positive bacteria (B. subtilis and S. aureus) and modest activities against a yeast (S. cerevisiae), [Ni(mtsc)Cl] 3 exhibited moderate activities against a Gram-positive bacterium (S. aureus), and [Ni(atsc)(OAc)] 5 showed modest activities against two Gram-positive bacteria (B. subtilis and S. aureus). On the other hand, the 6-coordinate, paramagnetic nickel(II) complexes with two protonated or deprotonated ligands ([Ni(mtsc)2] 2, [Ni(atsc)(mtsc)] 4, [Ni(atsc)2] 6, [Ni(Hatsc)2](NO3)(2)7, [Ni(Hatsc)2]Cl(2)8 and [Ni(Hasc)2](OAc)(2)9) and the sterically crowded 4-coordinate, diamagnetic nickel(II) complex ([Ni(dmtsc)] 10) did not inhibit the growth of the test organisms. The structure-activity correlation in this series of nickel(II) complexes was discussed based on their ligand-replacement abilities.  相似文献   

7.
The lipids of a moderately halophilic methanogen, Methanococcus voltae, accounted for 5.1% of the cell dry weight and consisted of 91% polar lipids and 9% neutral lipids. Twelve polar lipids were detected, three of which, all derivatives of 2,3-di-O-phytanyl-sn-glycerol, were identified as: 2,3-di-O-phytanyl-1-O-[beta-D-glucopyranosyl-(1-6)-beta-D- glucopyranosyl]-sn-glycerol, 2,3-di-O-phytanyl-1-O-[beta-D-glucopyranosyl]-sn-glycerol and a novel NAc-glucosamine 1-phosphate diether, and 2,3-di-O-phytanyl-1-[phosphoryl-2-acetamido-2-deoxy-beta-D- glucopyranosyl]-sn-glycerol. The neutral lipids consisted mainly of squalenes: squalene, dihydrosqualene, tetrahydrosqualene, hexahydrosqualene, and unidentified squalenes.  相似文献   

8.
抗动物病原菌芽孢杆菌的筛选、初步鉴定和抗菌活性   总被引:10,自引:0,他引:10  
从鸡肠道分离、挑选的18株芽孢杆菌经培养特征、形态观察、生理生化实验,初步被鉴定为枯草芽孢杆菌(Bacillus subtilus)、地衣芽孢杆菌(Bacillus licheniformis)、蜡状芽孢杆菌(Bacillus cereus)、巨大芽孢杆菌(Bacillus megaterium)和凝结芽孢杆菌(Bacillus coagulans)。同时测定了它们对5种常见动物病原菌大肠杆菌(E.coli)、金黄色葡萄球菌(Staphylococcus aureus)、肠炎沙门氏菌(Salmonella typhimurium)、猪链球菌(Streptococcus suis)、奇异变形杆菌(Proteus mirabilis)的抑菌活性,其中有4株芽孢杆菌对5种病原菌都有抑制作用。还分别测定了它们产木聚糖酶(从0.895 U1到3.239 U1)和纤维素酶活性(分别为0.391 U2和0.465 U2)。结果表明,芽孢杆菌分离株BC17、BC32、BC106、BC228、BC247和BC261具有作为益生菌的开发潜力。  相似文献   

9.
The two dominant glucolipids in Acholeplasma laidlawii, viz., 1,2-diacyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerol (MGlcDG) and 1,2-diacyl-3-O-[alpha-D-glucopyranosyl-(1----2)-O-alpha-D-glucopyranosyl ]- sn-glycerol (DGlcDG), have markedly different phase behavior. MGlcDG has an ability to form nonlamellar phases, whereas DGlcDG only forms lamellar phases. For maintenance of a stable lipid bilayer, the polar headgroup composition in A. laidlawii is metabolically regulated in vivo, in response to changes in the growth conditions [Wieslander et al. (1980) Biochemistry 19, 3650; Lindblom et al. (1986) Biochemistry 25, 7502]. To investigate the mechanism behind the lipid regulation, we have here studied bilayers of mixtures of unsaturated MGlcDG and DGlcDG, containing a small fraction of biosynthetically incorporated perdeuterated palmitic acid, with 2H NMR. The order-parameter profile of the acyl chains and an apparent transverse spin relaxation rate (R2) were determined from dePaked quadrupole-echo spectra. The order of the acyl chains in DGlcDG-d31 increases upon addition of protonated MGlcDG, whereas the order of MGlcDG-d31 decreases when DGlcDG is added. The variation of order with lipid composition is rationalized from simple packing constraints. R2 increases linearly with the square of the order parameter (S2) up to S approximately 0.14; then, R2 goes through a maximum and decreases. The increase in R2 with S2, as well as the magnitude of R2, is largest for pure MGlcDG-d31, smallest for DGlcDG-d31, and similar for mixtures with the same molar ratio of MGlcDG/DGlcDG but with the deuterium label on different lipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
【目的】克隆和表达二糖核苷类抗生素友菌素生物合成基因簇中的核苷转移酶基因amiE,并研究AmiE的体外催化功能。【方法】采用PCR技术将编码257个氨基酸的葡萄糖-1-磷酸核苷转移酶基因amiE克隆到表达载体pET28a上,构建质粒pCSG4001,转化入大肠杆菌E.coli BL21(DE3)中诱导表达;利用亲和层析分离纯化蛋白AmiE,以葡萄糖-1-磷酸和胸腺嘧啶三磷酸(TTP)或尿嘧啶三磷酸(UTP)为底物,利用高效液相检测AmiE的体外酶活;以甘露糖-1-磷酸、半乳糖胺-1-磷酸和半乳糖-1-磷酸和TTP作为底物,进一步研究AmiE对底物的选择性。【结果】N-末端融合组氨酸标签的AmiE蛋白在大肠杆菌中获得了可溶性表达,通过亲和层析纯化出的AmiE能够以TTP(或UTP)和葡萄糖-1-磷酸作为底物,催化形成胸腺嘧啶二磷酸葡萄糖(TDP-glucose)或者尿嘧啶二磷酸葡萄糖(UDP-glucose),但对其他三种底物,无明显催化活性。【结论】大肠杆菌中表达纯化的核苷转移酶AmiE能够体外催化形成TDP-葡萄糖(或UDP-葡萄糖),确证了AmiE作为核苷转移酶的催化功能,同时表明AmiE对底物具有一定的选择性。  相似文献   

11.
The effects of (human recombinant) tumor necrosis factor-alpha on phosphatidylinositol breakdown, release of 1,2-diacylglycerols, mobilization of arachidonate from diacylglycerol and prostaglandin synthesis were examined in a model osteoblast cell line (MC3T3-E1). Tumor necrosis factor-alpha (10 nM) caused a specific (30%) decrease in the mass of phosphatidylinositol (and no other phospholipids) within 30 min of exposure. Tumor necrosis factor-alpha doubled the rate of incorporation of [32P]orthophosphoric acid into phosphatidylinositol, indicating that the turnover of inositol phosphate was enhanced, and increased the content of diacylglycerol in parallel with phosphatidylinositol breakdown. The cytokine (10-50 nM; 4 h) also promoted a specific release of 24-34% of the [3H]arachidonate from prelabeled phosphatidylinositol, a release of 80% of the 3H-fatty acid from the diacylglycerol pool, and a 30-fold increase in the synthesis of prostaglandin E2. The tumor necrosis factor-alpha induced liberation of [3H]arachidonate from diacylglycerol, cellular arachidonate release and the synthesis of prostaglandin E2 were each blocked by an inhibitor of diacylglycerol lipase, the compound RHC 80267 (30 microM). Therefore, we conclude that, in the MC3T3-E1 cell line, tumor necrosis factor-alpha activates a phosphatidylinositol-specific phospholipase C (phosphatidylinositol inositolphosphohydrolase; EC 3.1.4.3) to release diacylglycerol, and increases the metabolism of diacylglycerol to liberate arachidonate for prostaglandin synthesis.  相似文献   

12.
The cytochrome P450 CYP79B1 from Sinapis alba has been heterologously expressed in Escherichia coli and shown to catalyze the conversion of tryptophan to indole-3-acetaldoxime. Three expression constructs were made, one expressing the native protein and two expressing proteins with different N-terminal modifications. The native construct gave the highest yield as estimated by enzymatic activity per liter of culture. Spheroplasts of E. coli expressing CYP79B1 were reconstituted with the Arabidopsis thaliana NADPH:cytochrome P450 reductase ATR1 heterologously expressed in E. coli to obtain enzymatic activity. This indicates that the E. coli electron-donating system, flavodoxin/flavodoxin reductase, does not support CYP79B1 activity. Recombinant CYP79B1 has a K(m) for tryptophan of 29+/-2 microM and a V(max) of 36.5+/-0.7nmolh(-1)(mlculture)(-1). The identity at the amino acid level of CYP79B1 is, respectively, 93 and 84% to CYP79B2 and CYP79B3 from A. thaliana, and 96% to CYP79B5 (Accession No. AF453287) from Brassica napus. The CYP79B subfamily of cytochromes P450 is likely to constitute a group of orthologous genes in the biosynthesis of indole glucosinolates.  相似文献   

13.
Bacillus megaterium GW1 and Escherichia coli W7-M5 were specifically radiolabeled with 2,2'-diamino[G-3H]pimelic acid [( 3H]DAP) as models of gram-positive and gram-negative bacteria, respectively. These radiolabeled bacterial mutants were incubated alone (control) and with mixed ruminal bacteria or protozoa, and the metabolic processes, rates, and patterns of radiolabeled products released from them were studied. Control incubations revealed an inherent difference between the two substrates; gram-positive supernatants consistently contained 5% radioactivity, whereas even at 0 h, those from the gram-negative mutant released 22%. Incubations with ruminal microorganisms showed that the two mutants were metabolized differently and that protozoa were the major effectors of their metabolism. Protozoa exhibited differential rates of engulfment (150 B. megaterium GW1 and 4,290 E. coli W7-M5 organisms per protozoan per h), and they extensively degraded [3H]DAP-labeled B. megaterium GW1 at rates up to nine times greater than those of ruminal bacteria. By contrast, [3H]DAP-labeled E. coli W7-M5 degradation by either ruminal bacteria or ruminal protozoa was more limited. These fundamental differences in the metabolism of the two mutants, especially by ruminal protozoa, were reflected in the patterns and rates of radiolabeled metabolites produced; many were rapidly released from [3H]DAP-labeled B. megaterium GW1, whereas few were slowly released from [3H]DAP-labeled E. coli W7-M5. Most radiolabeled products derived from [3H]DAP-labeled B. megaterium GW1 were peptides of bacterial peptidoglycan origin. The ruminal metabolism of DAP-containing gram-positive and gram-negative bacteria, even with the same peptidoglycan chemotype, is thus likely to be profoundly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In theArabidopsis genome, approximately 120 UDP-glycosyltransferases (UGTs) have been annotated. They generally catalyze the transfer of sugars to various acceptor molecules, including flavonoids. To better understand their physiological roles, we analyzed a tandemly located putative flavonoid UGT cluster comprisingUGT73B1, UGT73B2, andUGT73B3 on Chromosome IV. We then isolated four loss-of-function mutations —ugt73b1- 1, ugt73b2- 1, ugt73b3- 1, andugt73b3- 2. In our expression analysis, the closely related UCTs exhibited tissue-specific patterns of expression that were severely altered in their respective mutant plants. For example,UGT73B2 was up-regulated inugt73b1- 1, whereasUGT73B7 was highly expressed inugt73b2- 1, ugt73b3- t, andugt73b3- 2. Interestingly, each recessive mutant was resistant to methyl viologen (paraquat), an herbicide thought to cause oxidative stress. Our results suggest thatUGTs play an important role in the glycosylation pathways when responding to oxidative stress.  相似文献   

15.
Bacillus megaterium GW1 and Escherichia coli W7-M5 were specifically radiolabeled with 2,2'-diamino[G-3H]pimelic acid [( 3H]DAP) as models of gram-positive and gram-negative bacteria, respectively. These radiolabeled bacterial mutants were incubated alone (control) and with mixed ruminal bacteria or protozoa, and the metabolic processes, rates, and patterns of radiolabeled products released from them were studied. Control incubations revealed an inherent difference between the two substrates; gram-positive supernatants consistently contained 5% radioactivity, whereas even at 0 h, those from the gram-negative mutant released 22%. Incubations with ruminal microorganisms showed that the two mutants were metabolized differently and that protozoa were the major effectors of their metabolism. Protozoa exhibited differential rates of engulfment (150 B. megaterium GW1 and 4,290 E. coli W7-M5 organisms per protozoan per h), and they extensively degraded [3H]DAP-labeled B. megaterium GW1 at rates up to nine times greater than those of ruminal bacteria. By contrast, [3H]DAP-labeled E. coli W7-M5 degradation by either ruminal bacteria or ruminal protozoa was more limited. These fundamental differences in the metabolism of the two mutants, especially by ruminal protozoa, were reflected in the patterns and rates of radiolabeled metabolites produced; many were rapidly released from [3H]DAP-labeled B. megaterium GW1, whereas few were slowly released from [3H]DAP-labeled E. coli W7-M5. Most radiolabeled products derived from [3H]DAP-labeled B. megaterium GW1 were peptides of bacterial peptidoglycan origin. The ruminal metabolism of DAP-containing gram-positive and gram-negative bacteria, even with the same peptidoglycan chemotype, is thus likely to be profoundly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The sulfolipid sulfoquinovosyldiacylglycerol is a component of plant photosynthetic membranes and represents one of the few naturally occurring sulfonic acids with detergent properties. Sulfolipid biosynthesis involves the transfer of sulfoquinovose, a 6-deoxy-6-sulfoglucose, from UDP-sulfoquinovose to diacylglycerol. The formation of the sulfonic acid precursor, UDP-sulfoquinovose, from UDP-glucose and a sulfur donor is proposed to be catalyzed by the bacterial SQDB proteins or the orthologous plant SQD1 proteins. To investigate the underlying enzymatic mechanism and to elucidate the de novo synthesis of sulfonic acids in biological systems, we developed an in vitro assay for the recombinant SQD1 protein from Arabidopsis thaliana. Among different possible sulfur donors tested, sulfite led to the formation of UDP-sulfoquinovose in the presence of UDP-glucose and SQD1. An SQD1 T145A mutant showed greatly reduced activity. The UDP-sulfoquinovose formed in this assay was identified by co-chromatography with standards and served as substrate for the sulfolipid synthase associated with spinach chloroplast membranes. Approximate K(m) values of 150 microm for UDP-glucose and 10 microm for sulfite were established for SQD1. Based on our results, we propose that SQD1 catalyzes the formation of UDP-sulfoquinovose from UDP-glucose and sulfite, derived from the sulfate reduction pathway in the chloroplast.  相似文献   

17.
Bacterial peptidyl-tRNA hydrolase (Pth) activity ensures the rapid recycling of peptidyl-tRNAs that result from premature termination of translation. Pth has been shown to be essential for growth in Escherichia coli suggesting that its homologue in Staphylococcus aureus is a potential molecular therapeutic target for the development of antibacterial agents. In this report we describe the cloning of a DNA fragment (573 bp) containing the pth gene from a S. aureus (strain ISP3) genomic DNA library. Analysis of the predicted polypeptide sequence from the pth gene showed that the protein shared complete conservation of the three residues thought to be involved in the active site of E. coli Pth. The gene was cloned into a pQE-60 expression vector and expressed in E. coli, and the resulting His-tagged Pth protein was purified to greater than 95% purity from the soluble portion of the E. coli lysate in a single chromatographic step. His-tagged Pth was shown to be biologically active by its ability to hydrolyze diacetyl-[(3)H]Lys-tRNA(Lys) in a time- and concentration-dependent manner. Optimum hydrolyzing activity of Pth occurred at a pH value of 7.0 and a MgCl(2) concentration of 5 mM. The K(m) of the diacetyl-[(3)H]-Lys-tRNA(Lys) substrate for S. aureus Pth was determined to be 2.8 microM. A far UV circular dichroism spectrum revealed that His-tagged S. aureus Pth appears to have a structured core predominated by beta-sheet.  相似文献   

18.
The Arabidopsis type 1 UDP-glucose-dependent glucosyltransferase UGT72B1 is highly active in conjugating the persistent pollutants 3,4-dichloroaniline (DCA) and 2,4,5-trichlorophenol (TCP). To determine its importance in detoxifying xenobiotics in planta, mutant plants where the respective gene has been disrupted by T-DNA insertion have been characterized. Extracts from the knockout ugt72B1 plants showed radically reduced conjugating activity towards DCA and TCP and the absence of immunodetectable UGT72B1 protein. In contrast, activities towards phenolic natural products were unaffected. When aseptic root cultures were fed [14C]-DCA, compared with wild types, the ugt72B1 plants showed a reduced rate of uptake of the xenobiotic and very little metabolism to soluble DCA-glucose or associated polar conjugates. Instead, the knockouts accumulated non-extractable radioactive residues, most probably associated with lignification. When the feeding studies were carried out with [14C]-TCP, rates and routes of metabolism were identical in the wild type and knockouts, with TCP-glucoside a major product in both cases. Similar differential effects on the metabolism of DCA and TCP were obtained in whole plant studies with wild type and ugt72B1 mutants, demonstrating that while UGT72B1 had a central role in metabolizing chloroanilines in Arabidopsis, additional UGTs could compensate for the conjugation of TCP in the knockout. TCP was equally toxic to wild type and ugt72B1 plants, while surprisingly, the knockouts were less sensitive to DCA. From this it was concluded that the glucosylation of DCA may not be as effective in xenobiotic detoxification as bound-residue formation.  相似文献   

19.
Resting human tonsillar B cells were stimulated to divide by heat killed Staphylococcus aureus Cowan strain 1 which was shown to induce hydrolysis of phosphatidylinositol 4, 5-bisphosphate known to give rise to diacylglycerol and an increase in cytosolic free calcium. Addition of the diacylglycerols, 1-oleoyl-2 acetyl glycerol or sn-1, 2-dioctanoylglycerol, together with the calcium ionophore ionomycin to B cell cultures induced marked cell proliferation whereas these agents were ineffective when used alone. Both diacylglycerols were shown to compete with [3H] phorbol 12,13 dibutyrate in binding to protein kinase C. These data support the hypothesis that synergism between cytosolic calcium and endogenous diacylglycerol, which activates protein kinase C, is involved in signal transduction in the proliferation of human B cells.  相似文献   

20.
We have isolated the ypfP gene (accession number P54166) from genomic DNA of Bacillus subtilis Marburg strain 60015 ( Freese and Fortnagel, 1967 ) using PCR. After cloning and expression in E. coli , SDS–PAGE showed strong expression of a protein that had the predicted size of 43.6 kDa. Chromatographic analysis of the lipids extracted from the transformed E. coli revealed several new glycolipids. These glycolipids were isolated and their structures determined by nuclear magnetic resonance (NMR) and mass spectrometry. They were identified as 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol, 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol and 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol. The enzymatic activity expected to catalyse the synthesis of these compounds was confirmed by in vitro assays with radioactive substrates. In these assays, one additional glycolipid was formed and tentatively identified as 3-[ O -β- D -glucopyranosyl]-1,2-diacylglycerol, which was not detected in the lipid extract of transformed cells. Experiments with some of the above-described glycolipids as 14C-labelled sugar acceptors and unlabelled UDP-glucose as glucose donor suggest that the ypfP gene codes for a new processive UDP-glucose: 1,2-diacylglycerol-3-β- D -glucosyl transferase. This glucosyltransferase can use diacylglycerol, monoglucosyl-diacylglycerol, diglucosyldiacylglycerol or triglucosyldiacylglycerol as sugar acceptor, which, apart from the first member, are formed by repetitive addition of a glucopyranosyl residue in β (1→6) linkage to the product of the preceding reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号