首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection.  相似文献   

2.
Plasmodium parasites, the causative agents of malaria, first invade and develop within hepatocytes before infecting red blood cells and causing symptomatic disease. Because of the low infection rates in vitro and in vivo, the liver stage of Plasmodium infection is not very amenable to biochemical assays, but the large size of the parasite at this stage in comparison with Plasmodium blood stages makes it accessible to microscopic analysis. A variety of imaging techniques has been used to this aim, ranging from electron microscopy to widefield epifluorescence and laser scanning confocal microscopy. High‐speed live video microscopy of fluorescent parasites in particular has radically changed our view on key events in Plasmodium liver‐stage development. This includes the fate of motile sporozoites inoculated by Anopheles mosquitoes as well as the transport of merozoites within merosomes from the liver tissue into the blood vessel. It is safe to predict that in the near future the application of the latest microscopy techniques in Plasmodium research will bring important insights and allow us spectacular views of parasites during their development in the liver.  相似文献   

3.
The liver stages of Plasmodium parasites are important targets for the development of anti-malarial vaccine candidates and chemoprophylaxis approaches that aim to prevent clinical infection. Analyzing the impact of interventions on liver stages in the murine malaria model system Plasmodium yoelii has been cumbersome and requires terminal procedures. In vivo imaging of bioluminescent parasites has previously been shown to be an effective and non-invasive alternative to monitoring liver stage burden in the Plasmodium berghei model. Here we report the generation and characterization of a transgenic P. yoelii parasite expressing the reporter protein luciferase throughout the parasite life cycle. In vivo bioluminescent imaging of these parasites allows for quantitative analysis of P. yoelii liver stage burden and parasite development, which is comparable to quantitative RT-PCR analysis of liver infection. Using this system, we show that both BALB/cJ and C57BL/6 mice show comparable susceptibility to P. yoelii infection with sporozoites and that bioluminescent imaging can be used to monitor protective efficacy of attenuated parasite immunizations. Thus, this rapid, simple and noninvasive method for monitoring P. yoelii infection in the liver provides an efficient system to screen and evaluate the effects of anti-malarial interventions in vivo and in real-time.  相似文献   

4.
The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite''s life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.  相似文献   

5.
6.
Malaria, the disease caused by Plasmodium parasites, remains a major global health burden. The liver stage of Plasmodium falciparum infection is a leading target for immunological and pharmacological interventions. Therefore, novel approaches providing specific detection and isolation of live P. falciparum exoerythrocytic forms (EEFs) are warranted. Utilizing a recently generated parasite strain expressing green fluorescent protein (GFP) we established a method which, allows for detection and isolation of developing live P. falciparum liver stages by flow cytometry. Using this technique we compared the susceptibility of five immortalized human hepatocyte cell lines and primary hepatocyte cultures from three donors to infection by P. falciparum sporozoites. Here, we show that EEFs can be detected and isolated from in vitro infected cultures of the HC-04 cell line and primary human hepatocytes. We confirmed the presence of developing parasites in sorted live human hepatocytes and characterized their morphology by fluorescence microscopy. Finally, we validated the practical applications of our approach by re-examining the importance of host ligand CD81 for hepatocyte infection by P. falciparum sporozoites in vitro and assessment of the inhibitory activity of anti-sporozoite antibodies. This methodology provides us with the tools to study both, the basic biology of the P. falciparum liver stage and the effects of host-derived factors on the development of P. falciparum EEFs.  相似文献   

7.
Malaria is a parasitic disease that causes severe hemolytic anemia in Plasmodium-infected hosts, which results in the release and accumulation of oxidized heme (hemin). Although hemin impairs the establishment of Plasmodium immunity in vitro and in vivo, mice preconditioned with hemin develop lower parasitemia when challenged with Plasmodium chabaudi adami blood stage parasites. In order to understand the mechanism accounting for this resistance as well as the impact of hemin on eryptosis and plasma levels of scavenging hemopexin, red blood cells were labeled with biotin prior to hemin treatment and P. c. adami infection. This strategy allowed discriminating hemin-treated from de novo generated red blood cells and to follow the infection within these two populations of cells. Fluorescence microscopy analysis of biotinylated-red blood cells revealed increased P. c. adami red blood cells selectivity and a decreased permissibility of hemin-conditioned red blood cells for parasite invasion. These effects were also apparent in in vitro P. falciparum cultures using hemin-preconditioned human red blood cells. Interestingly, hemin did not alter the turnover of red blood cells nor their replenishment during in vivo infection. Our results assign a function for hemin as a protective agent against high parasitemia, and suggest that the hemolytic nature of blood stage human malaria may be beneficial for the infected host.  相似文献   

8.
9.
We have previously shown that the HIV protease inhibitor lopinavir-ritonavir (LPV-RTV) and the antibiotic trimethoprim sulfamethoxazole (TMP-SMX) inhibit Plasmodium liver stages in rodent malarias and in vitro in P. falciparum. Since clinically relevant levels are better achieved in the non-human-primate model, and since Plasmodium knowlesi is an accepted animal model for the study of liver stages of malaria as a surrogate for P. falciparum infection, we investigated the antimalarial activity of these drugs on Plasmodium knowlesi liver stages in rhesus macaques. We demonstrate that TMP-SMX and TMP-SMX+LPV-RTV (in combination), but not LPV-RTV alone, inhibit liver stage parasite development. Because drugs that inhibit the clinically silent liver stages target parasites when they are present in lower numbers, these results may have implications for eradication efforts.  相似文献   

10.
Malaria pathology is linked to remodeling of red blood cells by eukaryotic Plasmodium parasites. Central to host cell refurbishment is the trafficking of parasite-encoded virulence factors through the Plasmodium translocon of exported proteins (PTEX). Much of our understanding of its function is based on experimental work with cultured Plasmodium falciparum, yet direct consequences of PTEX impairment during an infection remain poorly defined. Using the murine malaria model parasite Plasmodium berghei, it is shown here that efficient sequestration to the pulmonary, adipose, and brain tissue vasculature is dependent on the PTEX components thioredoxin 2 (TRX2) and PTEX88. While TRX2-deficient parasites remain virulent, PTEX88-deficient parasites no longer sequester in the brain, correlating with abolishment of cerebral complications in infected mice. However, an apparent trade-off for virulence attenuation was spleen enlargement, which correlates with a strongly reduced schizont-to-ring-stage transition. Strikingly, general protein export is unaffected in PTEX88-deficient mutants that mature normally in vitro. Thus, PTEX88 is pivotal for tissue sequestration in vivo, parasite virulence, and preventing exacerbation of spleen pathology, but these functions do not correlate with general protein export to the host erythrocyte. The presented data suggest that the protein export machinery of Plasmodium parasites and their underlying mechanistic features are considerably more complex than previously anticipated and indicate challenges for targeted intervention strategies.  相似文献   

11.
One target of protective immunity against the Plasmodium liver stage in BALB/c mice is represented by the circumsporozoite protein (CSP), and mainly involves its recognition by IFN-γ producing specific CD8+T-cells. In a previous in vitro study we showed that primary hepatocytes from BALB/c mice process Plasmodium berghei (Pb) CSP (PbCSP) and present CSP-derived peptides to specific H-2kd restricted CD8+T-cells with subsequent killing of the presenting cells. We now extend these observations to an in vivo infection model in which infected hepatocytes and antigen specific T-cell clones are transferred into recipient mice inducing protection from sporozoite (SPZ) challenge. In addition, using a similar protocol, we suggest the capacity of hepatocytes in priming of naïve T-cells to provide protection, as further confirmed by induction of protection after depletion of cross-presenting dendritic cells (DCs) by cytochrome c (cyt c) treatment or using traversal deficient parasites. Our results clearly show that hepatocytes present Plasmodium CSP to specific-primed CD8+T-cells, and could also prime naïve T-cells, leading to protection from infection. These results could contribute to a better understanding of liver stage immune response and design of malaria vaccines.  相似文献   

12.
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite’s nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.  相似文献   

13.
Most of the organellar amino acyl-tRNA synthetases (aaRSs) are dually targeted to both mitochondria and chloroplasts using dual targeting peptides (dTPs). We have investigated the targeting properties and domain structure of dTPs of seven aaRSs by studying the in vitro and in vivo import of N-terminal deleted constructs of dTPs fused to green fluorescent protein. The deletion constructs were designed based on prediction programs, TargetP and Predotar, as well as LogoPlots derived from organellar proteomes in Arabidopsis thaliana. In vitro import was performed either into a single isolated organelle or as dual import (i.e., into a mixture of isolated mitochondria and chloroplasts followed by reisolation of the organelles). In vivo import was investigated as transient expression of the green fluorescent protein constructs in Nicotiana benthamiana protoplasts. Characterization of recognition determinants showed that the N-terminal portions of TyrRS-, ValRS- and ThrRS-dTPs (27, 22 and 23 amino acids, respectively) are required for targeting into both mitochondria and chloroplasts. Surprisingly, these N-terminal portions contain no or very few arginines (or lysines) but very high number of hydroxylated residues (26-51%). For two aaRSs, a domain structure of the dTP became evident. Removal of 20 residues from the dTP of ProRS abolished chloroplastic import, indicating that the N-terminal region was required for chloroplast targeting, whereas deletion of 16 N-terminal amino acids from AspRS-dTP inhibited the mitochondrial import, showing that in this case, the N-terminal portion was required for the mitochondrial import. Finally, deletion of N-terminal regions of dTPs for IleRS and LysRS did not affect dual targeting. In summary, it can be concluded that there is no general rule for how the determinants for dual targeting are distributed within dTPs; in most cases, the N-terminal portion is essential for import into both organelles, but in a few cases, a domain structure was observed.  相似文献   

14.
Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species.  相似文献   

15.
Plasmodium parasites express a potent inhibitor of cysteine proteases (ICP) throughout their life cycle. To analyze the role of ICP in different life cycle stages, we generated a stage-specific knockout of the Plasmodium berghei ICP (PbICP). Excision of the pbicb gene occurred in infective sporozoites and resulted in impaired sporozoite invasion of hepatocytes, despite residual PbICP protein being detectable in sporozoites. The vast majority of these parasites invading a cultured hepatocyte cell line did not develop to mature liver stages, but the few that successfully developed hepatic merozoites were able to initiate a blood stage infection in mice. These blood stage parasites, now completely lacking PbICP, exhibited an attenuated phenotype but were able to infect mosquitoes and develop to the oocyst stage. However, PbICP-negative sporozoites liberated from oocysts exhibited defective motility and invaded mosquito salivary glands in low numbers. They were also unable to invade hepatocytes, confirming that control of cysteine protease activity is of critical importance for sporozoites. Importantly, transfection of PbICP-knockout parasites with a pbicp-gfp construct fully reversed these defects. Taken together, in P. berghei this inhibitor of the ICP family is essential for sporozoite motility but also appears to play a role during parasite development in hepatocytes and erythrocytes.  相似文献   

16.
The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short‐chain fatty acid derivative that regulates the activity of α‐ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra‐hepaticparasite maturation. LipB‐deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid‐restricted conditions induced by treatment with the lipoic acid analogue 8‐bromo‐octanoate or with the lipid‐reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.  相似文献   

17.
18.
Previous studies have suggested that Plasmodium parasites can manipulate mosquito feeding behaviours such as probing, persistence and engorgement rate in order to enhance transmission success. Here, we broaden analysis of this ‘manipulation phenotype’ to consider proximate foraging behaviours, including responsiveness to host odours and host location. Using Anopheles stephensi and Plasmodium yoelii as a model system, we demonstrate that mosquitoes with early stage infections (i.e. non-infectious oocysts) exhibit reduced attraction to a human host, whereas those with late-stage infections (i.e. infectious sporozoites) exhibit increased attraction. These stage-specific changes in behaviour were paralleled by changes in the responsiveness of mosquito odourant receptors, providing a possible neurophysiological mechanism for the responses. However, we also found that both the behavioural and neurophysiological changes could be generated by immune challenge with heat-killed Escherichia coli and were thus not tied explicitly to the presence of malaria parasites. Our results support the hypothesis that the feeding behaviour of female mosquitoes is altered by Plasmodium, but question the extent to which this is owing to active manipulation by malaria parasites of host behaviour.  相似文献   

19.
The malaria parasite sporozoite sequentially invades mosquito salivary glands and mammalian hepatocytes; and is the Plasmodium lifecycle infective form mediating parasite transmission by the mosquito vector. The identification of several sporozoite-specific secretory proteins involved in invasion has revealed that sporozoite motility and specific recognition of target cells are crucial for transmission. It has also been demonstrated that some components of the invasion machinery are conserved between erythrocytic asexual and transmission stage parasites. The application of a sporozoite stage-specific gene knockdown system in the rodent malaria parasite, Plasmodium berghei, enables us to investigate the roles of such proteins previously intractable to study due to their essentiality for asexual intraerythrocytic stage development, the stage at which transgenic parasites are derived. Here, we focused on the rhoptry neck protein 11 (RON11) that contains multiple transmembrane domains and putative calcium-binding EF-hand domains. PbRON11 is localised to rhoptry organelles in both merozoites and sporozoites. To repress PbRON11 expression exclusively in sporozoites, we produced transgenic parasites using a promoter-swapping strategy. PbRON11-repressed sporozoites showed significant reduction in attachment and motility in vitro, and consequently failed to efficiently invade salivary glands. PbRON11 was also determined to be essential for sporozoite infection of the liver, the first step during transmission to the vertebrate host. RON11 is demonstrated to be crucial for sporozoite invasion of both target host cells – mosquito salivary glands and mammalian hepatocytes – via involvement in sporozoite motility.  相似文献   

20.
We previously reported the identification of TUSC1 (Tumor Suppressor Candidate 1), as a novel intronless gene isolated from a region of homozygous deletion at D9S126 on chromosome 9p in human lung cancer. In this study, we examine the differential expression of TUSC1 in human lung cancer cell lines by western blot and in a primary human lung cancer tissue microarray by immunohistochemical analysis. We also tested the functional activities and mechanisms of TUSC1 as a tumor suppressor gene through growth suppression in vitro and in vivo. The results showed no expression of TUSC1 in TUSC1 homozygously deleted cells and diminished expression in some tumor cell lines without TUSC1 deletion. Interestingly, the results from a primary human lung cancer tissue microarray suggested that higher expression of TUSC1 was correlated with increased survival times for lung cancer patients. Our data demonstrated that growth curves of tumor cell lines transfected with TUSC1 grew slower in vitro than those transfected with the empty vector. More importantly, xenograph tumors in nude mice grew significantly slower in vivo in cells stably transfected with TUSC1 than those transfected with empty vector. In addition, results from confocal microscopy and immunohistochemical analyses show distribution of TUSC1 in the cytoplasm and nucleus in tumor cell lines and in normal and tumor cells in the lung cancer tissue microarray. Taken together, our results support TUSC1 has tumor suppressor activity as a candidate tumor suppressor gene located on chromosome 9p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号