首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.  相似文献   

2.
Several known D2 pharmacophores have been explored as templates for identifying ligands with multiple binding affinities at dopamine and serotonin receptors considered as clinically relevant receptors in the treatment of neuropsychiatric diseases. This approach has resulted in the identification of ligands that target multiple CNS receptors while avoiding others associated with deleterious effects. In particular, compounds 11, 15 and 22 may have potential for further development as antipsychotic agents as they favorably interact with the clinically relevant receptors including D2R, 5-HT1AR, and 5-HT7R. We have also identified the pair of compounds 11 and 10 as high affinity D2R ligands with and without SERT binding affinities, respectively. These differential binding profiles endow the pair with the potential for evaluating SERT contributions to antipsychotic drug activity in animal behavioral models. In addition, compound 11 has no significant affinity for 5-HT2CR and binds only moderately to the H1R, suggesting it may not induce weight gain or sedation when used clinically. Taken together, compound 11 displays an interesting pharmacological profile that necessitates the evaluation of its functional and in vivo effects in animal models which are currently ongoing.  相似文献   

3.
A series of novel aporphine derivatives were synthesized for initial screening at the 5-HT2 receptor subtypes. Among them, Compounds 11a and 11b were identified as potent 5-HT2C hit ligands with high selectivity over other 5-HT2 receptor subtypes. Molecular docking study revealed that compounds 11a and 11b formed two key interactions with the binding site of 5-HT2C receptor, including a salt-bridge to D3.32 and a H-bond interaction with N6.55.  相似文献   

4.
It is now known that many neurotransmitter systems are responsible for diseases of the central nervous system (CNS). One of the most common CNS disease is depression. Considering that in the treatment and the genesis of depression, the most important are the serotonin receptors from 5-HT1A, 5-HT2A, 5-HT6 and 5-HT7 groups, and dopamine D2R this article describes searching for group of new ligands for mentioned receptors. In the searching for potentially useful compound, we decided to start from the structure of well-known Fananserin. We tried to developed new derivatives, with changed profile of activity compared to Fananserin. Literature analysis and virtual screening emerged group of halogenated long-chain arylpiperazines derivatives of 1,8 naphthosultam/lactam with hexyl carbon chain to synthesis. The compounds obtaining method was developed with a microwave assisted synthesis. Reactions were carried out in acetonitrile, water or in solvent-free conditions. The obtained compounds were tested for their affinity for the serotonin receptors mentioned above. The work managed to obtain compounds acting on selected serotonin receptors, including multifunctional 5-HT1A/5-HT7/D2 ligand 5k, dual 5-HT1A/D2 ligand 5j and selective 5-HT1A ligands 5r and 5c. The SAR analysis showed a visible dependence of affinity for the 5-HT6 receptors from structure of ligands. This relationship was discussed using molecular docking methods. A conformal analysis was also performed for selected ligands and the Fukui indexes were calculated using the DFT (B3LYP/6-311+G (d,p) level of theory) methods. The conducted research and analysis using molecular docking methods allows for selecting further pathways of structural modifications in the design of new ligands for serotonin receptors belonging to the group mentioned. What is more, conducted research show the potential using of Fukui indices to predict the biological activity of new molecules.  相似文献   

5.
Serotonin (5-hydroxytryptamine, 5-HT) is an important signaling molecule in the central nervous system (CNS) and in non-neuronal tissues and organs. Serotonin mediates a positive chronotropic and inotropic response through 5-HT4 receptors in the atrium and ventricle of the heart. Recent investigations have revealed increased expression of the 5-HT4(b) isoform in cardiomyocytes of chronic arrhythmic and failing hearts, and that the use of 5-HT4 receptor antagonists may be beneficial for treating these conditions. The 5-HT4 receptor possesses a transmembrane (TM) binding site important for ligand affinity and recognition, as well as a capacity to accommodate bulky ligands. A new series of peripherally-acting 5-HT4 receptor antagonists were prepared by combining the acidic biphenyl group from the class of angiotensin II receptor blockers (ARBs) with the SB207266 (piboserod) scaffold. The new compounds were pharmacologically evaluated and carboxylic acid 21 was identified as a potent and promising 5-HT4 receptor antagonist with moderate affinity for the AT1 receptor. The permeability of carboxylic acid 21 in a Caco-2 assay was low and the corresponding prodrug esters 23af were therefore prepared. The pharmacokinetics of methyl ester 20 and n-butyl ester 23c were evaluated in a rat model, revealing incomplete metabolism to carboxylic acid 21. However, methyl ester 20 is a potent 5-HT4 receptor antagonist with binding affinities in the low picomolar range. Methyl ester 20 has promising oral bioavailability and pharmacokinetics and may target 5-HT4 receptors in both CNS and peripheral organs.  相似文献   

6.
This Letter describes our attempts to elaborate dually acting compounds possessing serotonin re-uptake transporter inhibitor and serotonin 5-HT2C receptor antagonist properties. A novel series of 1,3-diphenylureas and N-phenylbenzamides have thus been prepared and evaluated. Based on its in vitro and in vivo activities, as well as pharmacokinetic profile, compound 16a was identified as a lead compound. The synthesis and structure–activity relationship of this series of compounds is presented herein.  相似文献   

7.
More than 300 million people are suffering from depression, one of the civilization diseases in the 21st century. Serotonin 5-HT1AR and dopamine D2R play an important role in the treatment and pathogenesis of depression. Moreover, in recent years, the efficacy of dual 5-HT1A/D2 receptors ligands has been demonstrated in the fight against depression. In this work the new bulky arylpiperazine derivatives (LCAP) were synthesized in microwave radiation field. The affinities for the selected serotonin (5-HT1A,5-HT2A,5-HT6,5-HT7) and dopamine (D2) receptors have been evaluated in vitro. Compounds 5.3a, 5.4, 5.1c, 5.3d, 5.2a are promising dual 5-HT1AR/D2R ligands. The SAR analysis were additionally supported with molecular docking studies.  相似文献   

8.
A series of novel 3β-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki = 0.6 nM), 6c and 6i (Ki = 0.4 nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki = 62.7 nM and Ki = 30.5 nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability.  相似文献   

9.
4-(Piperazin-1-yl methyl)-N1-arylsulfonyl indole derivatives were designed and synthesized as 5-HT6 receptor (5-HT6R) ligands. The lead compound 6a, from this series shows potent in vitro binding affinity, good PK profile, no CYP liabilities and activity in animal models of cognition.  相似文献   

10.
The N-alkylation of the sulfonamide moiety, in a group of arylsulfonamide derivatives of (aryloxy)ethyl piperidines, may be considered as a strategy for the design of selective 5-HT7 receptor ligands or multifunctional agents to extend a polypharmacological approach to the treatment of complex diseases. The study allowed for the identification of 31 (1-methyl-N-{1-[2-(2-(t-butyl)phenoxy)ethyl]piperidin-4-yl}-N-cyclopropylmethyl-1H-pyrazole-4-sulfonamide), a potent and selective 5-HT7 receptor antagonist and 33 (1-methyl-N-{1-[2-(biphenyl-2-yloxy)ethyl]piperidin-4-yl}-N-cyclopropylmethyl-1H-pyrazole-4-sulfonamide), as multimodal 5-HT/dopamine receptor ligand, as 5-HT2A/5-HT7/D2 receptor antagonists. Both selected compounds were evaluated in vivo in a forced swim test (FST) in mice and in a novel object recognition (NOR) task in rats, demonstrating distinct antidepressant-like and pro-cognitive properties (MED = 1.25 mg/kg and 1 mg/kg, ip, respectively). These findings warrant further studies to explore the therapeutic potential of N-alkylated arylsulfonamides for the treatment of CNS disorders.  相似文献   

11.
In the pharmacotherapy of schizophrenia, there is a lack of effective drugs, and currently used agents cause a large number of side effects. The D2, 5-HT1A, 5-HT2A receptors are among the most important receptor targets in the treatment of schizophrenia, but antagonism at 5-HT6 and 5-HT7 receptors may bring about additional improvement of cognitive functions. However, doubt exists regarding the importance of 5-HT7R in the pharmacotherapy. In 2010, lurasidone (with high affinity for D2, D3, 5-HT1A, 5-HT2A, 5-HT7 receptors) was approved for the treatment of schizophrenia. Due to the efficacy of the mentioned drug and doubts related to the role of 5-HT7R, we decided to obtain compounds with an activity profile similar to that of lurasidone, but with the reduced affinity for 5-HT7R and increased affinity for 5-HT6R. For this purpose, we chose a flexible hexyl derivative of lurasidone (2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)hexahydro-1H-4,7-methanoisoindole-1,3(2H)-dione 1a) as a hit structure. After molecular modeling, we modified it, in the area of the arylpiperazine and imide group, using the moieties found in other known CNS drugs. We received the compounds in accordance with the previously developed method of ecological synthesis in the microwave radiation field. Among the obtained compounds, N-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)naphthalene-sulfonamides 1v and 1w were distinguished as multifunctional ligands showing increased affinity for 5-HT6R, and 2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one 1i – a multifunctional ligand showing moderate affinity for 5-HT6R and threefold lower for 5-HT7R. In the paper, we discuss some of the observed dependencies regarding 5-HT6/5-HT7R affinity using molecular docking methods.  相似文献   

12.
A series of 3-(3-(4-(3-(1H-indol-3-yl)propyl)piperazin-1-yl)propyl)-1H-indole derivatives (3ad and 5af) as homo- and hetero-bis-ligands, were synthesized and evaluated for in vitro affinity at the serotonin transporter (SERT) and the 5-HT1A receptor. Compounds 5b and 5f showed nanomolar affinities for both targets. The experimental data were rationalized according to results obtained from docking experiments. These findings are in agreement with our proposal that bis-indole derivatives can bind both targets, and might serve as leads in the quest of ligands endowed with a dual mechanism of action.  相似文献   

13.
A new series of arylpiperazide derivatives of phenylpiperazines of general formula 4 has been prepared and evaluated as 5-HT1B receptor antagonists. In vitro experiments at human cloned 5-HT1B receptors show that these derivatives are potent and selective 5-HT1B receptor antagonists. Among them, compound 4f was found to be orally active, to gain access to the CNS and more importantly to induce an increase in extracellular brain 5-HT upon systemic administration.  相似文献   

14.
A series of benzoxazole/benzothiazole-2,3-dihydrobenzo[b][1,4]dioxine derivatives (5a5d and 8a8j) was synthesized. Compounds were evaluated for binding affinities at the 5-HT1A and 5-HT2A receptors. Antidepressant activities of the compounds were screened using the forced swimming test (FST) and the tail suspension test (TST). The results indicated that the compounds exhibited high affinities for the 5-HT1A and 5-HT2A receptors and showed a marked antidepressant-like activity. Compound 8g exhibited high affinities for the 5-HT1A (Ki = 17 nM) and 5-HT2A (Ki = 0.71 nM) receptors; it also produced a decrease of the immobility time and exhibited potent antidepressant-like effects in the FST and TST in mice.  相似文献   

15.
All clinically-used antipsychotics display similar affinity for both D2 (D2R) and D3 (D3R) receptors, and they likewise act as 5-HT2A receptor antagonists. They provide therapeutic benefit for positive symptoms, but no marked or consistent improvement in neurocognitive, social cognitive or negative symptoms. Since blockade of D3 and 5-HT6 (5-HT6R) receptors enhances neurocognition and social cognition, and potentially improves negative symptoms, a promising approach for improved treatment for schizophrenia would be to develop drugs that preferentially act at D3R versus D2R and likewise recognize 5-HT6R. Starting from the high affinity 5-HT6R ligands I and II, we identified compounds 11a and 14b that behave as 5-HT6R ligands with significant selectivity for D3R over D2R.  相似文献   

16.
In this work we describe the synthesis, docking studies and biological evaluation of a focused library of novel arylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin. The new compounds were screened for their 5-HT1A and 5-HT2A receptor affinity. Among the evaluated compounds, six displayed high affinities to 5-HT1A receptors (4a-0.9?nM, 6a-0.5?nM, 10a-0.6?nM, 3b-0.9?nM, 6b-1.5?nM, 10b-1?nM). Compound 6a and 10a bearing a bromo- or methoxy- substituent in ortho position of the piperazine phenyl ring, were identified as potent antagonists of the 5-HT1A receptors. In the tail suspension test, mice injected with 6a showed a dose-dependent increase in depressive-like behavior that was related to a decrease in locomotor activity. Compound 10a did not decrease or prolong immobility time nor did it affect home cage activity. Molecular docking studies using 5-HT1A and 5-HT2A homology models revealed structural basis of the high affinity of ortho-substituted derivatives and subtle changes in amino acid interactions patterns depending on the length of the alkyl linker.  相似文献   

17.
A series of 1-aminoethyl-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines 10az was prepared as novel 5-HT6 ligands. The best compounds were high affinity, full agonists at 5-HT6 receptors. Several agonists demonstrated good selectivity over other serotonergic and dopaminergic receptors. Acute administration of selective agonist 10e significantly increased extracellular GABA concentrations in rat frontal cortex. This compound also reduced adjunctive drinking behavior in the rat schedule-induced polydipsia assay, possibly predictive of efficacy in obsessive compulsive disorder and other anxiety related disorders.  相似文献   

18.
We previously reported that the novel dual 5-HT2B and 5-HT7 receptor antagonist N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (4) exerted a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs. To develop a synthetic strategy, we performed docking studies of lead compound 4 bound to 5-HT2B and 5-HT7 receptors, and observed that the carbonyl guanidine group forms a tight interaction network with an active center Asp (D135:5-HT2B, D162:5-HT7), Tyr (Y370:5-HT2B, Y374:5-HT7) and aromatic residue (W131:5-HT2B, F158:5-HT7). Based on molecular modeling results, we optimized the substituents at the 5- to 8-position and 9-position of the fluorene ring and identified N-(diaminomethylene)-9-hydroxy-9-methyl-9H-fluorene-2-carboxamide (24a) exhibits potent affinity for 5-HT2B (Ki = 4.3 nM) and 5-HT7 receptor (Ki = 4.3 nM) with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 24a reversed the hypothermic effect of 5-carboxamidotryptamine (5-CT) in mice and also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered at 30 mg/kg. Compound 24a is therefore a promising candidate for a novel class of anti-migraine agent without any adverse effects.  相似文献   

19.
A series of 5-(piperidinylethyloxy)quinoline 5-HT1 receptor ligands have been studied by elaboration of the series of dual 5-HT1-SSRIs reported previously. These new compounds display a different in vitro pharmacological profile with potent affinity across the 5-HT1A, 5-HT1B and 5-HT1D receptors and selectivity against the serotonin transporter. Furthermore, they have improved pharmacokinetic profiles and CNS penetration.  相似文献   

20.
Following previous studies focused on the search for new molecules targeting GluN2B-containing NMDA, a small series of 1-(1H-indol-3-yl)-2-(4-phenylpiperidin-1-yl)ethanone derivatives has been synthesized by using Microwave Assisted Organic Synthesis (MAOS). Given that GluN2B ligands frequently exert off-target effects we also tested their affinity towards sigma receptors. Binding assay revealed that only the 1-(5-hydroxy-1H-indol-3-yl)-2-(4-phenylpiperidin-1-yl)ethanone (7a) retained GluN2B affinity. Interestingly, the 5-methoxyindoles 5a and 6a were efficient and selective ligands toward σ2 receptor (Ki values of 10 nM and 20 nM, respectively). Thus, in this case the discovery of new σ2 receptor selective ligands was an unexpected result emerging from the screening of cross-activity against other CNS receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号