首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cervical cancer is second most common cancer in woman worldwide. Cervical cancer caused by human papillomavirus (HPV) oncogene. Inhibition of histone deacetylase (HDAC) activity has been known as a potential strategy for cancer therapy. SAHA is an HDAC inhibitor that has been used in cancer therapy but still has side effects. SAHA modification proposed to minimize side effects. Triazole attachment on the chain of SAHA has been known to enhance the inhibition ability of SAHA and less toxic. In this study, it will be carried out with molecular dynamic simulations of SAHA modifications consisting ligand 1a, 2a and, 2c to interact with six HDAC in hydrated conditions. To all six HDAC Class II, performed docking with SAHA and a modified inhibitor. The docking results were then carried out molecular dynamics simulations to determine the inhibitor affinities in hydrated conditions. The molecular dynamic simulations results show better affinities of ligand 2c with HDAC 4, 6, and 7 than SAHA itself, and good affinity was also shown by ligand 2a and 1c on HDAC 5 and 9. The results of this study can be a reference to obtain better inhibitors.  相似文献   

2.
Triple-negative breast cancer (TNBC), defined by the absence of an estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, is associated with an early recurrence of disease and poor outcome. Furthermore, the majority of deaths in breast cancer patients are from metastases instead of from primary tumors. In this study, MCF-7 (an estrogen receptor-positive human breast cancer cell line), MDA-MB-231 (a human TNBC cell line) and 4T1 (a mouse TNBC cell line) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with suberoylanilide hydroxamic acid (SAHA, an inhibitor of histone deacetylase (HDAC)) and to determine the underlying mechanisms of these effects in vitro and in vivo. We also evaluated the ability of SAHA to inhibit the metastasis of 4T1 cells. We found that IR combined with SAHA showed increased therapeutic efficacy when compared with either treatment alone in MCF-7, MDA-MB-231 and 4T1 cells. Moreover, the combined treatment enhanced DNA damage through the inhibition of DNA repair proteins. The combined treatment was induced primarily through autophagy and ER stress. In an orthotopic breast cancer mouse model, the combination treatment showed a greater inhibition of tumor growth. In addition, SAHA inhibited the migration and invasion abilities of 4T1 cells and inhibited breast cancer cell migration by inhibiting the activity of MMP-9. In an in vivo experimental metastasis mouse model, SAHA significantly inhibited lung metastasis. SAHA not only enhances radiosensitivity but also suppresses lung metastasis in breast cancer. These novel findings suggest that SAHA alone or combined with IR could serve as a potential therapeutic strategy for breast cancer.  相似文献   

3.
In order to study the long-range radical transfer in the Escherichia coli ribonucleotide reductase (RNR), caged cytidine 5'-diphosphate (CDP) 1 was synthesized, which contains the photolabile (7-diethylaminocoumarin-4-yl)methyl moiety. The caged CDP 1 triggers the release of CDP when irradiated at wavelengths between 365 and 436 nm. The rate constant of the formation of alcohol 2 and cytidine 5'-diphosphate 3 is 2x10(8) s(-1) and the quantum efficiency for the disappearance of caged CDP 1 is 2.9%.  相似文献   

4.
The present article describes the synthesis and biological activity of various series of novel hydroxamic acids incorporating quinazolin‐4(3H)‐ones as novel small molecules targeting histone deacetylases. Biological evaluation showed that these hydroxamic acids were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI?H23, lung). Most compounds displayed superior cytotoxicity than SAHA (suberoylanilide hydroxamic acid, Vorinostat) in term of cytotoxicity. Especially, N‐hydroxy‐7‐(7‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5b ) and N‐hydroxy‐7‐(6‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5c ) (IC50 values, 0.10–0.16 μm ) were found to be approximately 30‐fold more cytotoxic than SAHA (IC50 values of 3.29–3.67 μm ). N‐Hydroxy‐7‐(4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5a ; IC50 values of 0.21–0.38 μm ) was approximately 10‐ to 15‐fold more potent than SAHA in cytotoxicity assay. These compounds also showed comparable HDAC inhibition potency with IC50 values in sub‐micromolar ranges. Molecular docking experiments indicated that most compounds, as represented by 5b and 5c , strictly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA.  相似文献   

5.
Herein, we report the design, synthesis and evaluation of novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides ( 4 a – i , 7 a – g ) targeting histone deacetylases. Three human cancer cell lines were used to test the cytotoxicity of the synthesized compounds (SW620, colon; PC-3, prostate; NCI−H23, lung cancer); inhibitory activity towards HDAC; anticancer activity; as well as their impact on the cell cycle and apoptosis. As a result, compounds 4 a – i bearing the alkyl substituents seemed to be less potent than the benzyl-containing compounds 7 a – g in all biological assays. Compounds 7 e – f were found to be the most active HDAC inhibitors with IC50 of 1.498±0.020 μM and 1.794±0.159 μM, respectively. In terms of cytotoxicity and anticancer assay, 7 e and 7 f also showed good activity with IC50 values in the micromolar range. In addition, the cell cycle and apoptosis of SW620 were affected by compound 7 f in almost a similar manner to that of reference compound SAHA. Docking assays were carried out for analysis the binding mode and selectivity of this compound toward 8 HDAC isoforms. Overall, our data confirmed that the inhibition of HDAC plays a pivotal role in their anticancer activity.  相似文献   

6.
A series of novel 5,6,7,8-Tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one derivatives bearing a hydroxamic acid, 2-aminoanilide and hydrazide moieties as zinc-binding group (ZBG) were designed, synthesized and evaluated for the HDAC inhibition activity and antiproliferative activity. Most of the tested compounds displayed strong to moderate HDAC inhibitory activity. Some of these compounds showed potent anti-proliferative activity against human HepG2, MCF-7 and HCT-116 cell lines. In particular, compounds IVa, IVb, IXa and IXb exhibited significant anti-proliferative activity against the three cell lines tested compared to SAHA as a reference. Compound IVb is equipotent inhibitor for HDAC1 and HDAC2 as SAHA. It is evident that the presence of free hydroxamic acid group is essential for Zn binding affinity with maximal activity with a linker of aliphatic 6 carbons. Docking study results revealed that compound IVb could occupy the HDAC2 binding site and had the potential to exhibit antitumor activity through HDAC inhibition, which merits further investigation.  相似文献   

7.
8.
A series of N-hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides were designed and synthesized as novel HDAC inhibitors. General SAR has been established for the substituents at positions 1 and 2, as well as the importance of the ethylene group and its attachment to position 5. Optimized compounds are much more potent than SAHA in both enzymatic and cellular assays. A representative compound, 23 (SB639), has demonstrated antitumor activity in a colon cancer xenograft model.  相似文献   

9.
Histone deacetylase (HDAC) inhibitors modulate various cellular functions including proliferation, differentiation, and apoptosis. Vorinostat (SuberAniloHydroxamic Acid, SAHA) is the first HDAC inhibitor approved by FDA for cancer treatment. However, SAHA distributes in cancer tissue and normal tissue in similar levels. It will be ideal to selectively deliver SAHA into cancer cells. Rapidly growing cancer cells have a great need of cholesterol. Low-density lipoprotein (LDL) is the major cholesterol carrier in plasma and its uptake is mediated by LDL-receptor (LDL-R), a glycoprotein overexpressed on the surface of cancer cells. Herein, we designed and synthesized a SAHA cholesterol conjugate, and further formed the conjugate containing particles with LDL as the carrier. The diameters of the particles were determined. The inhibitory activity of the particles carrying the conjugate was determined with cancer cell proliferation assay, and the hydrolysis of the conjugate by the enzymes in cancer cells was confirmed with LC–MS/MS.  相似文献   

10.
11.
Histone deacetylase (HDAC) proteins have emerged as important targets for anti-cancer drugs, with four small molecules approved for use in the clinic. Suberoylanilide hydroxamic acid (Vorinostat, SAHA) was the first FDA-approved HDAC inhibitor for cancer treatment. However, SAHA inhibits most of the eleven HDAC isoforms. To understand the structural requirements of HDAC inhibitor selectivity and develop isoform selective HDAC inhibitors, SAHA analogs modified in the linker at the C5 position were synthesized and tested for potency and selectivity. C5-modified SAHA analogs displayed dual selectivity to HDAC6 and HDAC8 over HDAC 1, 2, and 3, with only a modest reduction in potency. These findings are consistent with prior work showing that modification of the linker region of SAHA can alter isoform selectivity. The observed HDAC6/8 selectivity of C5-modified SAHA analogs provide guidance toward development of isoform selective HDAC inhibitors and more effective anti-cancer drugs.  相似文献   

12.
13.
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone-rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m-Carboxycinnamic acid bis-Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS-275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood-brain barrier, oral administration may allow deceleration of progressive alpha-motoneurone degeneration by epigenetic SMN2 gene activation.  相似文献   

14.
15.
In discovery of HDAC inhibitors (HDACIs) with improved anticancer potency, structural modification was performed on the previous derived indole-3-butyric acid derivative. Among all the synthesised compounds, molecule I13 exhibited high HDAC inhibitory and antiproliferative potencies in the in vitro investigations. The IC50 values of I13 against HDAC1, HDAC3, and HDAC6 were 13.9, 12.1, and 7.71 nM, respectively. In the cancer cell based screening, molecule I13 showed increased antiproliferative activities in the inhibition of U937, U266, HepG2, A2780, and PNAC-1 cells compared with SAHA. In the HepG2 xenograft model, 50 mg/kg/d of I13 could inhibit tumour growth in athymic mice compared with 100 mg/kg/d of SAHA. Induction of apoptosis was revealed to play an important role in the anticancer potency of molecule I13. Collectively, a HDACI (I13) with high anticancer activity was discovered which can be utilised as a lead compound for further HDACI design.  相似文献   

16.
17.
Human colon cancer cells and primary colon cancer silence the gene coding for LDH (lactate dehydrogenase)-B and up-regulate the gene coding for LDH-A, resulting in effective conversion of pyruvate into lactate. This is associated with markedly reduced levels of pyruvate in cancer cells compared with non-malignant cells. The silencing of LDH-B in cancer cells occurs via DNA methylation, with involvement of the DNMTs (DNA methyltransferases) DNMT1 and DNMT3b. Colon cancer is also associated with the expression of pyruvate kinase M2, a splice variant with low catalytic activity. We have shown recently that pyruvate is an inhibitor of HDACs (histone deacetylases). Here we show that pyruvate is a specific inhibitor of HDAC1 and HDAC3. Lactate has no effect on any of the HDACs examined. Colon cancer cells exhibit increased HDAC activity compared with non-malignant cells. HDAC1 and HDAC3 are up-regulated in colon cancer cells and in primary colon cancer, and siRNA (small interfering RNA)-mediated silencing of HDAC1 and HDAC3 in colon cancer cells induces apoptosis. Colon cancer cells silence SLC5A8, the gene coding for a Na(+)-coupled pyruvate transporter. Heterologous expression of SLC5A8 in the human colon cancer cell line SW480 leads to inhibition of HDAC activity when cultured in the presence of pyruvate. This process is associated with an increase in intracellular levels of pyruvate, increase in the acetylation status of histone H4, and enhanced cell death. These studies show that cancer cells effectively maintain low levels of pyruvate to prevent inhibition of HDAC1/HDAC3 and thereby to evade cell death.  相似文献   

18.
Cancer therapy has moved beyond conventional chemotherapeutics to more mechanism-based targeted approaches. Studies demonstrate that histone deacetylase (HDAC) is a promising target for anticancer agents. Numerous, structurally diverse, hydroxamic acid derivative, HDAC inhibitors have been reported and have been shown to induce growth arrest, differentiation, autophagy, and/or apoptotic cell death by inhibiting multiple signaling pathways in cancer cells. Suberoylanilide hydroxamic acid (SAHA) has emerged as an effective anticancer therapeutic agent and was recently approved by the FDA for the treatment of advanced cutaneous T-cell lymphoma. In our previous study, we reported the development of the novel, potent, selenium-containing HDAC inhibitors (SelSA-1 and SelSA-2). In this study, the effects of SelSA-1 and SelSA-2 on signaling pathways and cytotoxicity were compared with the known HDAC inhibitor, SAHA, in lung cancer cell lines. After 24 h of treatment, SelSA-1 and SelSA-2 inhibited lung cancer cell growth to a greater extent than SAHA in a dose-dependent manner with IC50 values at low micromolar concentrations. SelSA-1 and SelSA-2 inhibited ERK and PI3K-AKT signaling pathways while simultaneously increasing in autophagy in A549 cells in a time dependent manner. This preliminary study demonstrates the effectiveness of the selenium-containing analogs of SAHA, SelSA-1, and SelSA-2, as HDAC inhibitors and provides insight into the improvement and/or development of these analogs as a therapeutic approach for the treatment of lung cancer.  相似文献   

19.
20.
A novel family of 3-((4-oxo-4H-chromen-3-yl)methyl)-4H-chromen-4-one (bis-chromone) derivatives were designed, synthesized and studied for their anti-cancer activity using the XTT assay for the growth inhibition against various human cancer cells. Among them, 3-((5-(cyclohexylmethoxy)-4-oxo-4H-chromen-3-yl)methyl)-7-methoxy-4H-chromen-4-one and 3-((5-(cyclohexylmethoxy)-4-oxo-4H-chromen-3-yl)methyl)-7-hydroxy-4H-chromen-4-one showed micromolar level of in vitro anti-proliferative activity against human cancer cell lines. The SAR studies indicated bis-chromone as a basic scaffold to design anticancer agents. The 5-cyclohexylmethoxy on the first chromenone ring and electron donating group such as CH3, OCH3 or hydrogen bonding group (OH) on the other chromenone ring of bis-chromone increased the activity. However, saturation of one of chromenone to chromanone in bis-chromones decreased the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号