首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell level.  相似文献   

2.
Multiple Sclerosis (MS) is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS). T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE) animal models for the disease. A technology for quantitative and 3 dimensional (3D) spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography (OPT). Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical disease in several mouse and a rat model of MS refining the information regarding the spatial dynamics of the inflammatory component in EAE. This method provides a powerful tool to investigate the effect of environmental and genetic forces and for assessing the therapeutic effects of drug therapy in animal models of MS and other neuroinflammatory/neurodegenerative disorders.  相似文献   

3.
Photoacoustic tomography is a recently developed imaging modality that can provide high spatial-resolution images of hemoglobin distribution in tissues such as the breast. Because breast cancer is an angiogenesis-dependent type of malignancy, we evaluated the clinical acceptability of breast tissue images produced using our first prototype photoacoustic mammography (PAM) system in patients with known cancer. Post-excisionally, histological sections of the tumors were stained immunohistochemically (IHC) for CD31 (an endothelial marker) and carbonic anhydrase IX (CAIX) (a marker of hypoxia). Whole-slide scanning and image analyses were used to evaluate the tumor microvessel distribution pattern and to calculate the total vascular perimeter (TVP)/area for each lesion. In this clinical study, 42 lesions were primarily scanned using PAM preoperatively, three of which were reported to be benign and were excluded from statistical analysis. Images were produced for 29 out of 39 cancers (visibility rate = 74.4%) at the median depth of 26.5 (3.25–51.2) mm. Age, menopausal status, body mass index, history of neoadjuvant treatment, clinical stage and histological tumor angiogenesis markers did not seem to affect the visibility. The oxygen saturation level in all of the measured lesions was lower than in the subcutaneous counterpart vessels (Wilcoxon test, p value<0.001), as well as in the counterpart contralateral normal breast region of interest (ROI) (Wilcoxon test, p value = 0.001). Although the oxygen saturation level was not statistically significant between CAIX-positive vs. -negative cases, lesional TVP/area showed a positive correlation with the oxygen saturation level only in the group that had received therapy before PAM. In conclusion, the vascular and oxygenation data obtained by PAM have great potential for identifying functional features of breast tumors.  相似文献   

4.

Background

Patients with Parkinson''s disease (PD) suffer from a high fall risk. Previous approaches for evaluating fall risk are based on self-report or testing at a given time point and may, therefore, be insufficient to optimally capture fall risk. We tested, for the first time, whether metrics derived from 3 day continuous recordings are associated with fall risk in PD.

Methods and Materials

107 patients (Hoehn & Yahr Stage: 2.6±0.7) wore a small, body-fixed sensor (3D accelerometer) on lower back for 3 days. Walking quantity (e.g., steps per 3-days) and quality (e.g., frequency-derived measures of gait variability) were determined. Subjects were classified as fallers or non-fallers based on fall history. Subjects were also followed for one year to evaluate predictors of the transition from non-faller to faller.

Results

The 3 day acceleration derived measures were significantly different in fallers and non-fallers and were significantly correlated with previously validated measures of fall risk. Walking quantity was similar in the two groups. In contrast, the fallers walked with higher step-to-step variability, e.g., anterior-posterior width of the dominant frequency was larger (p = 0.012) in the fallers (0.78±0.17 Hz) compared to the non-fallers (0.71±0.07 Hz). Among subjects who reported no falls in the year prior to testing, sensor-derived measures predicted the time to first fall (p = 0.0034), whereas many traditional measures did not. Cox regression analysis showed that anterior-posterior width was significantly (p = 0.0039) associated with time to fall during the follow-up period, even after adjusting for traditional measures.

Conclusions/Significance

These findings indicate that a body-fixed sensor worn continuously can evaluate fall risk in PD. This sensor-based approach was able to identify transition from non-faller to faller, whereas many traditional metrics were not successful. This approach may facilitate earlier detection of fall risk and may in the future, help reduce high costs associated with falls.  相似文献   

5.
抗体(antibody)又称免疫球蛋白(immunoglobulin,Ig),是人体免疫反应的重要参与者.了解抗体的结构和结构动态特征,是理解人体免疫作用机理、修复或提高免疫能力、定向设计抗体以治疗各种疾病的基础.本文以人体IgG1抗体为对象,综述了使用透射电子显微学方法研究IgG1抗体结构方向的最新进展.详细介绍了使用逐个分子的电子断层三维重构技术(individual-particle electron tomography,IPET)对抗体进行结构研究的方法,包括样品制备、图像处理和数据分析等.并描述了利用该技术,在研究抗体结合肽分子后的结构形变和通过收集不同构象来研究抗体动态结构特征方面所取得的阶段性成果.最后,对尚待解决的关键问题与该技术未来的发展方向进行了讨论与展望.  相似文献   

6.
Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D.  相似文献   

7.
The apical complex is one of the defining features of apicomplexan parasites, including the malaria parasite Plasmodium, where it mediates host penetration and invasion. The apical complex is also known in a few related lineages, including several non-parasitic heterotrophs, where it mediates feeding behaviour. The origin of the apical complex is unclear, and one reason for this is that in apicomplexans it exists in only part of the life cycle, and never simultaneously with other major cytoskeletal structures like flagella and basal bodies. Here, we used conventional TEM and serial TEM tomography to reconstruct the three dimensional structure of the apical complex in Psammosa pacifica, a predatory relative of apicomplexans and dinoflagellates that retains the archetype apical complex and the flagellar apparatus simultaneously. The P. pacifica apical complex is associated with the gullet and consists of the pseudoconoid, micronemes, and electron dense vesicles. The pseudoconoid is a convex sheet consisting of eight short microtubules, plus a band made up of microtubules that originate from the flagellar apparatus. The flagellar apparatus consists of three microtubular roots. One of the microtubular roots attached to the posterior basal body is connected to bypassing microtubular strands, which are themselves connected to the extension of the pseudoconoid. These complex connections where the apical complex is an extension of the flagellar apparatus, reflect the ancestral state of both, dating back to the common ancestor of apicaomplexans and dinoflagellates.  相似文献   

8.
Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.  相似文献   

9.
A coat of paint adds considerable value to an automobile. In addition to consuming up to 60% of the energy needed by automobile assembly plants, however, the painting process also creates both economic and environmental impacts. This study investigated the degree of cost and environmental impact improvement that can be expected when modifications are considered for existing paint processes through heat integration. In order to accomplish this goal, a mathematical model was created to describe the energy use, costs, and environmental impacts from energy consumption in an automobile assembly painting facility. The model agrees with measured energy consumption data for process heating and electricity demand to within about 15% for one Michigan truck facility from which model input parameters were obtained. Thermal pinch analysis determined an energy conservation target of 58% of paint process energy demand. A heat exchanger network optimization study was conducted in order to determine how closely the network design could achieve this target. The resulting heat exchanger network design was profitable based on a discounted cash flow analysis and may achieve reductions in total corporate energy consumption of up to 16% if implemented corporatewide at a major automobile manufacturer.  相似文献   

10.
Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms.  相似文献   

11.
12.
Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.  相似文献   

13.
Breast epithelial cells develop into polarized and highly organized acinar and ductal structures in response to stromal cues, including extracellular matrix composition and density, which can in part be reproduced in 3D culture conditions. Here, we present the effects of various 3D in vitro stroma compositions (termed “matrices” or “substrates”) on the ability of heterotypic cultures of epithelial and mesenchymal stem cells to organize into acinar and tubular structures. Normal murine mammary gland (NMuMG) cells were cultured, either alone or in combination (30:70) with mouse mesenchymal stem cells (D1), in 3D matrices generated by agarose, collagen, and Matrigel® alone or by a combination thereof. After 3–5 d in culture, cell distribution, organization, and the presence of acinus-like and tubule-like structures were determined. The number of acinar structures was significantly higher in cultures grown in combination matrices of agarose with Matrigel® or collagen I when compared with cultures grown in Matrigel® or collagen I alone (p?p?相似文献   

14.
Abstract

Benzodiazepine receptor (BDZR) ligands are structurally diverse compounds that bind to specific binding sites on GABAA receptors and allosterically modulate the effect of GABA on chloride ion flux. The binding of BDZR ligands to this receptor system results in activity at multiple behavioral endpoints, including anxiolytic, sedative, anticonvulsant, and hyperphagic effects. In the work presented here, a computational procedure developed in our laboratory has been used to obtain a 3D pharmacophore for ligand recognition of the GABAA/BDZRS initiating the hyperphagic response. To accomplish this goal, 17 structurally diverse compounds, previously assessed in our laboratory for activity at the hyperphagic endpoint, were used. The result is a four-component 3D pharmacophore. It consists of two proton acceptor atoms, the centroid of an aromatic ring and the centroid of a hydrophobic moiety in a common geometric arrangement in all compounds with activity at this endpoint. This 3D pharmacophore was then assessed and successfully validated using three different tests. First, two BDZR ligands, which were included as negative controls in the set of seventeen compounds used for the pharmacophore development, did not fit the pharmacophore. Second, some benzodiazepine ligands known to have activity at the hyperphagia endpoint, but not included in the pharmacophore development, were used as positive controls and were found to fit the pharmacophore. Finally, using the 3D pharmacophore developed in the present work to search 3D databases, over 50 classical benzodiazepines were found. Among them, were benzodiazepine ligands known to have an effect at the hyperphagic endpoint. In addition, the novel compounds also found in this search are promising therapeutic agents that could beneficially affect feeding behavior.  相似文献   

15.
16.
This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real‐time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48‐h culture period. Cells were uniformly dispersed within the 14.40 mm × 17.46 mm × 6.35 mm chamber. Cells suspended in 6.35‐mm thick gels and cultured in a traditional CO2 incubator were found to be round and dead. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. Biotechnol. Bioeng. 2009; 104: 1215–1223. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
《Cell reports》2023,42(7):112778
  1. Download : Download high-res image (221KB)
  2. Download : Download full-size image
  相似文献   

18.
Although the nuclear genome sequence of Cyanidioschyzon merolae 10D, a unicellular red alga, was recently determined, DNA transformation technology that is important as a model plant system has never been available thus far. In this study, improved culture conditions resulted in a faster growth rate of C. merolae in liquid medium (doubling time = 9.2 h), and colony formation on gellan gum plates. Using these conditions, spontaneous mutants (5-fluoroortic acid resistant) deficient in the UMP synthase gene were isolated. The lesions were then restored by introducing the wild-type UMP synthase gene into the cells suggesting DNA transformation by homologous recombination.  相似文献   

19.
Trichothecene 3-O-acetyltransferase (TRI101) is an indispensable enzyme for the biosynthesis of trichothecenes, a group of mycotoxins produced by Fusarium graminearum. In this study, an inhibitor of TRI101 was identified by chemical array analysis using compounds from the RIKEN Natural Products Depository (NPDepo) library. Although the addition of the identified enzyme inhibitor to the fungal culture did not inhibit trichothecene production, it can serve as a candidate lead compound in the development of a mycotoxin inhibitor that inactivates fungal defense mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号