首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of bis-quaternary pyridinium derivatives 3a3i of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide (2) have been synthesized. The synthesized pyridinium compounds have an amide group in conjugation to the oxime moiety. These compounds were evaluated in vitro for their reactivation efficacy against organophosphorus (OP) nerve agents (NAs) (sarin and VX) inhibited human erythrocyte ghost acetylcholinesterase (hAChE) and compared with the reactivation efficacy of 2-PAM and obidoxime. The pKa values of the synthesized compounds were found closer to the pKa values of 2- and 4-pyridinium oxime reactivators such as 2-PAM and obidoxime. Some of the compounds have shown better reactivation efficacy than 2-PAM, and obidoxime against sarin and VX inhibited AChE.  相似文献   

2.
In this work, the ability of four newly synthesized oximes--K005 (1,3-bis(2-hydroxyiminomethylpyridinium) propane dibromide), K027 (1-(4-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium) propane dibromide), K033 (1,4-bis(2-hydroxyiminomethylpyridinium) butane dibromide) and K048 (1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide) to reactivate acetylcholinesterase (AChE, EC 3.1.1.7) inhibited by nerve agents is summarized. Reactivation potency of these compounds was tested using standard in vitro reactivation test. Tabun, sarin, cyclosarin and VX agent were used as appropriate testing nerve agents. Rat brain AChE was used as a source of the enzyme. Efficacies of new reactivators to reactivate tabun-, sarin-, cyclosarin- and VX-inhibited AChE were compared with the currently used AChE reactivators (pralidoxime, obidoxime and HI-6). Oxime K048 seems to be promising reactivator of tabun-inhibited AChE. Its reactivation potency is significantly higher than that of HI-6 and pralidoxime and comparable with the potency of obidoxime. The best reactivator of sarin-inhibited AChE seems to be oxime HI-6. None of the new AChE reactivators reached comparable reactivation potency. The same results were obtained for cyclosarin-inhibited AChE. However, oxime K033 is also potent reactivator of AChE inhibited by this nerve agent. In the case of VX inhibition, obidoxime and new oximes K027 and K048 seem to be the best AChE reactivators. None from the currently tested AChE reactivators is able to reactivate AChE inhibited by all nerve agents used and, therefore, the search for new potential broad spectrum AChE reactivators is needed.  相似文献   

3.
A new series of nonquaternary conjugates for reactivation of both nerve agents and pesticides inhibited hAChE were described in this paper. It was found that substituted salicylaldehydes conjugated to aminobenzamide through piperidine would produce efficient reactivators for sarin, VX and tabun inhibited hAChE, such as L6M1R3, L6M1R5 to L6M1R7, L4M1R3 and L4M1R5 to L4M1R7. The in vitro reactivation experiment for pesticides inhibited hAChE of these new synthesized oximes were conducted for the first time. Despite they were less efficient than obidoxime, some of them were highlighted as equal or more efficient reactivators in comparison to 2-PAM. It was found that introduction of peripheral site ligands could increase oximes’ binding affinity for inhibited hAChE in most cases, which resulted in greater reactivation ability.  相似文献   

4.
Abstract

The series of symmetrical and unsymmetrical isoquinolinium-5-carbaldoximes was designed and prepared for cholinesterase reactivation purposes. The novel compounds were evaluated for intrinsic acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) inhibition, when the majority of novel compounds resulted with high inhibition of both enzymes and only weak inhibitors were selected for reactivation experiments on human AChE or BChE inhibited by sarin, VX, or paraoxon. The AChE reactivation for all used organophosphates was found negligible if compared to the reactivation ability of obidoxime. Importantly, two compounds were found to reactivate BChE inhibited by sarin or VX better to obidoxime at human attainable concentration. One compound resulted as better reactivator of NEMP (VX surrogate)-inhibited BChE than obidoxime. The in vitro results were further rationalized by molecular docking studies showing future directions on designing potent BChE reactivators.  相似文献   

5.
Exposure to the organophosphorus nerve agents such as sarin, soman, cyclosarin, and VX causes acute intoxication by inhibiting acetylcholinesterase (AChE), where the serine residue of the active site can attack the phosphorous atom of the organophosphorus agents to form a strong P–O bond. The purpose of the present study was to evaluate new oxime antidotes to reactivate the inhibited AChE. We have designed and synthesized several new oximes, and have evaluated the substances that differ from the currently used oximes in linker between the two pyridinium rings. The potency of newly synthesized oximes was compared with two currently used AChE reactivators (2-PAM, HI-6). The reactivation potencies of the bis-pyridinium oximes connected with a (CH2)n linker between the two quaternary nitrogen atoms were evaluated with housefly (HF) AChE inhibited by diisopropyl fluorophosphates (DFP) and by paraoxon. The bis-pyridinium oximes showed stronger activity compared with mono-pyridinium oxime, and the magnitude of reactivation potency depended on the length of the methylene linker. The potency order was (CH2) < (CH2)2 < (CH2)3 > (CH2)4 > (CH2)7. A (CH2)3 linker was optimal in HF AChE inhibited by either DFP or paraoxon. Thus, bis-pyridinium oxime 5 which has (CH2)3 linker showed the highest activity in this series of compounds. Interestingly, 5 was not as active as 2-PAM, showing that the position of the oxime group on the pyridinium ring is also very important for the reactivation potency.  相似文献   

6.
The efficacy of a new bispyridinium oxime 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide, called K048, and currently used oximes (pralidoxime, obidoxime, the oxime HI-6) to reactivate acetylcholinesterase inhibited by various nerve agents (sarin, tabun, cyclosarin, VX) was tested by in vitro methods. The new oxime K048 was found to be a more efficacious reactivator of nerve agent-inhibited acetylcholinesterase than pralidoxime (in the case of VX, tabun and cyclosarin), obidoxime (cyclosarin and tabun) and HI-6 (tabun) but it did not reach the efficacy of currently used oximes for the reactivation of acetylcholinesterase inhibited by sarin. Thus, the oxime K048 seems to be a relatively efficacious broad spectrum acetylcholinesterase reactivator and, therefore, it could be useful for the treatment of a nerve agent-exposed population if information about detection of the type of nerve agent is not available.  相似文献   

7.
Organophosphorus pesticides (e.g. chlorpyrifos, malathion, and parathion) and nerve agents (sarin, tabun, and VX) are highly toxic organophosphorus compounds with strong inhibition potency against two key enzymes in the human body—acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BuChE; EC 3.1.1.8). Subsequent accumulation of acetylcholine at synaptic clefts can result in cholinergic crisis and possible death of intoxicated organism. For the recovery of inhibited AChE, derivatives from the group of pyridinium or bispyridinium aldoximes (called oximes) are used. Their efficacy depends on their chemical structure and also type of organophosphorus inhibitor. In this study, we have tested potency of selected cholinesterase reactivators (pralidoxime, obidoxime, trimedoxime, methoxime and H-oxime HI-6) to reactivate human erythrocyte AChE and human plasma BuChE inhibited by pesticide paraoxon. For this purpose, modified Ellman's method was used and two different concentrations of oximes (10 and 100 μM), attainable in the plasma within antidotal treatment of pesticide intoxication were tested. Results demonstrated that obidoxime (96.8%) and trimedoxime (86%) only reached sufficient reactivation efficacy in case of paraoxon-inhibited AChE. Other oximes evaluated did not surpassed more than 25% of reactivation. In the case of BuChE reactivation, none of tested oximes surpassed 12.5% of reactivation. The highest reactivation efficacy was achieved for trimedoxime (12.4%) at the concentration 100 μM. From the data obtained, it is clear that only two from currently available oximes (obidoxime and trimedoxime) are good reactivators of paraoxon-inhibited AChE. In the case of BuChE, none of these reactivators could be used for its reactivation.  相似文献   

8.
First-line medical treatment against nerve agents consists of co-administration of anticholinergic agents and oxime reactivators, which reactivate inhibited AChE. Pralidoxime, a commonly used oxime reactivator, is effective against some nerve agents but not against others; thus, new oxime reactivators are needed. Novel tacrine-pyridinium hybrid reactivators in which 4-pyridinealdoxime derivatives are connected to tacrine moieties by linear carbon chains of different lengths (C2–C7) were prepared (Scheme 1, 5a–f). Their binding affinities to electric eel AChE were tested because oximes can inhibit free AChE, and the highest AChE activity (95%, 92%, and 90%) was observed at 1?μM concentrations of the oximes (5a, 5b, and 5c, respectively). Based on their inhibitory affinities towards free AChE, 1?μM concentrations of the oxime derivatives (5) were used to examine reactivation of paraoxon-inhibited AChE. Reactivation ability increased as the carbon linker chains lengthened (n?=?2–5), and 5c and 5d showed remarkable reactivation ability (41%) compared to that of 2-PAM (16%) and HI-6 (4%) against paraoxon-inhibited electric eel AChE at 1?μM concentrations. Molecular docking simulation showed that the most stable binding free energy was observed in 5c at 73.79?kcal?mol?1, and the binding mode of 5c is acceptable for the oxygen atom of oximate to attack the phosphorus atom of paraoxon and reactivate paraoxon-inhibited eel AChE model structure.  相似文献   

9.
Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances with at least one oxime group in position four.  相似文献   

10.
The efficacy of a new bispyridinium oxime 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide, called K048, and currently used oximes (pralidoxime, obidoxime, the oxime HI-6) to reactivate acetylcholinesterase inhibited by various nerve agents (sarin, tabun, cyclosarin, VX) was tested by in vitro methods. The new oxime K048 was found to be a more efficacious reactivator of nerve agent-inhibited acetylcholinesterase than pralidoxime (in the case of VX, tabun and cyclosarin), obidoxime (cyclosarin and tabun) and HI-6 (tabun) but it did not reach the efficacy of currently used oximes for the reactivation of acetylcholinesterase inhibited by sarin. Thus, the oxime K048 seems to be a relatively efficacious broad spectrum acetylcholinesterase reactivator and, therefore, it could be useful for the treatment of a nerve agent-exposed population if information about detection of the type of nerve agent is not available.  相似文献   

11.
The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.  相似文献   

12.
New bis-pyridinium oxime reactivators connected with CH2O(CH2)n OCH2 linkers between two pyridinium rings were designed and synthesized, and their reactivation potency was evaluated for AChE inhibited by organophosphorus VX agent. Among the prepared compounds, 1,2-dimethoxy-ethylene-bis-N,N'-4-pyridiumaldoxime dichloride 5a was the most potent and appeared to be the most promising compound as a potential reactivator for AChE inhibited by organophosphorus VX agent.  相似文献   

13.
Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances with at least one oxime group in position four.  相似文献   

14.
Treatment of poisoning by highly toxic organophosphorus compounds (OP) with atropine and an acetylcholinesterase (AChE) reactivator (oxime) is of limited effectiveness in case of different nerve agents and pesticides. One challenge is the reactivation of OP-inhibited brain AChE which shows inadequate success with charged pyridinium oximes. Recent studies with high doses of the tertiary oxime isonitrosoacetone (MINA) indicated a beneficial effect on central and peripheral AChE and on survival in nerve agent poisoned guinea pigs. Now, an in vitro study was performed to determine the reactivation kinetics of MINA with tabun-, sarin-, cyclosarin-, VX- and paraoxon-inhibited human AChE. MINA showed an exceptionally low affinity to inhibited AChE but, with the exception of tabun-inhibited AChE, a moderate to high reactivity. In comparison to the pyridinium oximes obidoxime, 2-PAM and HI-6 the affinity and reactivity of MINA was in most cases lower and in relation to the most effective reactivators, the second order reactivation constant of MINA was 500 to 3400-fold lower. Hence, high in vivo MINA concentrations would be necessary to achieve at least partial reactivation. This assumption corresponds to in vivo data showing a dose-dependent effect on reactivation and survival in animals. In view, of the toxic potential of MINA in animals human studies would be necessary to determine the tolerability and pharmacokinetics of MINA in order to enable a proper assessment of the value of this oxime as an antidote in OP poisoning.  相似文献   

15.
New bis-pyridinium oxime reactivators 6 with CH2O(CH2)2OCH2 and CH2O(CH2)4OCH2 linkers between the two pyridinium rings were designed and synthesized. In the in vitro test of their potency to reactivate AChE inhibited by organophosphorus agents at 5 × 10−3 M concentration, the reactivation ability of 1,2-dimethoxy-ethylene-bis-N,N′-4-pyridiumaldoxime dichloride (6a) was 63% for housefly (HF) AChE inhibited by diisopropyl fluorophosphates (DFP), 51% for bovine red blood cell (RBC) AChE inhibited by DFP, 67% for HF-AChE inhibited by paraoxon, and 81% for RBC-AChE inhibited by paraoxon. Except in the case of DFP-inhibited HF AChE test of 2-PAM, the activities of 6a are much higher than the activities of 2-PAM and HI-6 which are AChE reactivators currently in use.  相似文献   

16.
Nerve agents such as sarin, cyclosarin and tabun are organophosphorus substances able to inhibit the enzyme acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None of the known AChE reactivators is able to reactivate AChE inhibited by all nerve agents used. In this work, reactivation potency of nine newly developed AChE reactivators with an incorporated xylene ring in their structure was measured in vitro. Cyclosarin was chosen as an appropriate member of the nerve agent family. Reactivation potency of the tested AChE reactivators was compared with the gold standard of AChE reactivators – pralidoxime. Two oximes (K107 and K108) surpassed the reactivation potency of pralidoxime. Moreover, from the obtained results it could be deduced that AChE reactivators with a functional oxime group in position-2 are the most potent AChE reactivators in the case of cyclosarin intoxications.  相似文献   

17.
The generally accepted explanation for the effects of oximes in countering organophosphorus (OP) anticholinesterase is reactivation of the inhibited acetylcholinesterase (AChE). With soman, the inhibited AChE rapidly becomes resistant to oxime reactivation due to a phenomenon called aging. Thus, pretreatment with pyridostigmine (Py) or physostigmine (Ph) followed by atropine sulfate therapy is required to achieve significant protection against soman; the effectiveness of a pretreatment/therapy (P/T) regimen can be further increased against certain OPs (e.g. sarin and VX) by including an oxime in the therapy regimen. The P/T regimen is clouded by a controversy concerning the use of oximes in the treatment of carbamate intoxication, because 2-PAM has been reported to exacerbate intoxication by some carbamates and to have no effect on decarbamylation rates. To better understand the role of oxime therapy in the theory of pretreatment of OP intoxication we examined the effects of 2-PAM and HI-6 on the rate of decarbamylation of Py-inhibited erythrocyte AChE in vitro and in vivo, and studied the effects of atropine plus 2-PAM or HI-6 on Py toxicity. In decarbamylation experiments, Py-inhibited guinea pig erythrocytes were washed free of excess Py and incubated with vehicle or oxime (2 X 10(-4) M, pH 7.3 and 37 degrees C). Aliquots were assayed for AChE activity at various times during a 60 min incubation period. Rate constants were calculated and compared to determine whether the presence of oxime affected decarbamylation. The data from in vitro and in vivo experiments revealed that oximes accelerated the decarbamylation (p less than 0.05) of inhibited AChE. Lethality data for Py-treated guinea pigs showed that treatment with atropine (23 mumoles/kg, im) plus 2-PAM or HI-6 (145 mumoles/kg, im) at one min after injection of Py increased the protective ratio from 4.2 (atropine only) to 5.1 and 12.2, respectively. It is suggested that the enhanced therapeutic efficacy of atropine by oximes against Py intoxication is related to oxime-induced reactivation.  相似文献   

18.
One of the therapeutic approaches to organophosphate poisoning is to reactivate AChE with site-directed nucleophiles such as oximes. However, pyridinium oximes 2-PAM, HI-6, TMB-4 and obidoxime, found as the most effective reactivators, have limiting reactivating potency in tabun poisoning. We tested oximes varying in the type of ring (pyridinium and/or imidazolium), the length and type of the linker between rings, and in the position of the oxime group on the ring to find more effective oximes to reactivate tabun-inhibited human erythrocyte AChE. Three of our tested pyridinium oximes K027, K048, K074, along with TMB-4, were the most promising for AChE reactivation. Promising oximes were further tested in vivo on tabun poisoned mice not only as antidotes in combination with atropine but also as pretreatment drug. Herein, we showed that a promising treatment in tabun poisoning by selected oximes and atropine could be improved if oximes are also used in pretreatment. Since the reactivating efficacy of the oximes in vitro corresponded to their therapeutic efficacy in vivo, it seems that pharmacological effect of these oximes is indeed primarily related to the reactivation of tabun-phosphorylated AChE.  相似文献   

19.
Oxime K027 is a low-toxic bisquaternary compound originally developed as a reactivator of acetylcholinesterase (AChE) inhibited by nerve agents. The reactivation potency of K027 has been tested as a potential reactivator of AChE inhibited by tabun, sarin, cyclosarin, soman, VX, Russian VX, paraoxon, methylchlorpyrifos, and DDVP. The results show that oxime K027 reactivated AChE inhibited by almost all tested inhibitors to more than 10%, which is believed to be enough for saving the lives of intoxicated organisms. In the case of cyclosarin- and soman-inhibited AChE, oxime K027 did not reach sufficient reactivation potency.  相似文献   

20.
Nerve agents such as sarin, cyclosarin and tabun are organophosphorus substances able to inhibit the enzyme acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None of the known AChE reactivators is able to reactivate AChE inhibited by all nerve agents used. In this work, reactivation potency of nine newly developed AChE reactivators with an incorporated xylene ring in their structure was measured in vitro. Cyclosarin was chosen as an appropriate member of the nerve agent family. Reactivation potency of the tested AChE reactivators was compared with the gold standard of AChE reactivators--pralidoxime. Two oximes (K107 and K108) surpassed the reactivation potency of pralidoxime. Moreover, from the obtained results it could be deduced that AChE reactivators with a functional oxime group in position-2 are the most potent AChE reactivators in the case of cyclosarin intoxications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号