首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(OC-6-33)-Dichlorido(ethane-1,2-diamine)dihydroxidoplatinum(IV) (1) was carboxylated using succinic- or 3-methylglutaric anhydride. The resulting bis(carboxylato)platinum(IV) complexes display free, uncoordinated carboxylic acid groups which were further derivatized with primary aliphatic alcohols. The complexes were characterized in detail by elemental analysis, ESI-MS, FT-IR, as well as multinuclear (1H, 13C, 15N, 195Pt) NMR spectroscopy. Cytotoxic properties were evaluated in four human tumor cell lines originating from ovarian carcinoma (CH1, SK-OV-3), cervical carcinoma (HeLa) and colon carcinoma (SW480) by means of the MTT assay (MTT = 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). Structure-activity relationships showed that the cytotoxicity increased with increasing lipophilicity of the alcoholate moiety yielding IC50 values in the low micromolar or even low nanomolar range.  相似文献   

2.
The clinical application of Pt-based anticancer drugs has inspired the development of novel chemotherapeutic metallodrugs with improved efficacies. Pt(IV) prodrugs are one of the most promising successors of Pt(II) drugs and have displayed great anticancer performance. In particular, judicious modification of axial ligands endows Pt(IV) complexes with unique properties that enable them to overcome the limitations of conventional Pt(II) drugs. Herein, we summarize recent developments in Pt(IV) anticancer complexes, with a focus on their axial functionalization with other anticancer agents, immunotherapeutic agents, photosensitive ligands, peptides, and theranostic agents. We hope that this concise view of recently reported Pt(IV) coordination complexes will help researchers to design next-generation multi-functional anticancer agents based on a comprehensive Pt(IV) platform.  相似文献   

3.
The oxidation from to in HCl aq. was studied in situ by combining electrochemistry with XAFS spectroscopy. During the oxidation of , isosbestic points were observed in Pt LIII and LII XANES spectra as a function of time, indicating that the Pt(II/IV) redox equilibrium is the only reaction in the system. The Pt LIII and LII X-ray absorption edge energies of the initial PtIICl42− are 11562.9 and 13271.8 eV, respectively, while those of the electrolyzed species are 11564.6 and 13273.7 eV which are identical with those of a reference sample. The coordination of the electrolyzed species was characterized by structural parameters derived from the EXAFS curve fit, and identified to .  相似文献   

4.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

5.
Platinum(II) and platinum(IV) complexes with 3-amino-5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione (L) with general formulaе cis-[PtL2X2nH2O and [PtL2Cl4], where X = Cl, Br, I and n = 2-4) were synthesized. The novel compounds were fully characterized by elemental analysis, IR, 1H, 13C, 195Pt NMR spectra, thermal analysis and molar conductivity. The geometry of Pt(II) complexes and of the organic ligand in the gas phase were optimized using the hybrid DFT method B3LYP with LANL2DZ and 6-31G** basis sets. Some physicochemical parameters as dipole moment, HOMO, LUMO energies and ESP charges were calculated. The comparison of the bond length and angles, obtained from the X-ray analysis and DFT calculations is realized. The cytotoxic effects of these complexes in human T-cell leukemia KE-37 (SKW-3) are reported.  相似文献   

6.
Syntheses of two novel ligand precursors O,O'-diisopropyl- (1a) and O,O'-diisobutyl-(S,S)-ethylenediamine-N,N'-di-2-propanoate dihydrochloride monohydrate (1b) and the corresponding dichloroplatinum(II) (2a and 2b) and tetrachloroplatinum(IV) complexes (3a and 3b) are described here. The substances were characterized by IR, (1)H and (13)C spectroscopy and elemental analysis. Crystal structures were determined for 1a and the corresponding platinum(IV) complex, 3a. In vitro antiproliferative activity was determined against tumor cell lines: human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, rested and stimulated normal immunocompetent cells (human peripheral blood mononuclear PBMC cells) using KBR test (Kenacid Blue Dye binding test). The IC(50)(microM) values for the most active compound 3a were: 30.48+/-2.54; 12.26+/-2.60; 13.68+/-3.22; 80.18+/-24.07 and 71.30+/-21.70, respectively.  相似文献   

7.
Mono(trifluoroacetato)platinum(IV) complexes of the formula [PtIV(dach)L3(TFAc)] (dach = trans-(±)-1,2-diaminocyclohexane, TFAc = trifluoroacetate, L = acetate or propionate) could be prepared from the reaction of [PtIV(dach)L3(OH)] with trifluoroacetic anhydride in the presence of a base and the crystal structure of compound 4 was determined by X-ray crystallography. In vitro antitumor activity of complex 4 (ED50 = 3.1 μM) was found to be much higher than carboplatin (ED50 = 10.2 μM).  相似文献   

8.
trans -[PtCl4(NH3)(thiazole)] (1), trans-[PtCl4(cha)(NH3)] (2), cis-[PtCl4(cha)(NH3)] (3) (cha =cyclohexylamine), and cis-[PtCl4(NH3)2] (4) has been investigatedat 25 °C in a 1.0 M aqueous medium at pH 2.0–5.0 (1) and 4.5–6.8 (24) using stopped-flow spectrophotometry. The redox reactions follow the second-order rate law , where k is a pH-dependent rate constant and [GSH]tot the total concentration of glutathione. The reduction takes place via parallel reactions between the platinum(IV) complexes and the various protolytic species of glutathione. The pH dependence of the redox kinetics is ascribed to displacement of these protolytic equilibria. The thiolate species GS is the major reductant under the reaction conditions used. The second-order rate constants for reduction of compounds 14 by GS are (1.43±0.01)×107, (3.86±0.03)×106, (1.83±0.01)×106, and (1.18±0.01)×106 M−1 s−1, respectively. Rate constants for reduction of 1 by the protonated species GSH are more than five orders of magnitude smaller. The mechanism for the reductive elimination reactions of the Pt(IV) compounds is proposed to involve an attack by glutathione on one of the mutually trans coordinated chloride ligands, leading to two-electron transfer via a chloride-bridged activated complex. The kinetics results together with literature data indicate that platinum(IV) complexes with a trans Cl-Pt-Cl axis are reduced rapidly by glutathione as well as by ascorbate. In agreement with this observation, cytotoxicity profiles for such complexes are very similar to those for the corresponding platinum(II) product complexes. The rapid reduction within 1 s of the platinum(IV) compounds with a trans Cl-Pt-Cl axis to their platinum(II) analogs does not seem to support the strategy of using kinetic inertness as a parameter to increase anticancer activity, at least for this class of compounds. Received: 8 December 1999 / Accepted: 15 February 2000  相似文献   

9.
Six dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,4-phenylenebis(methylene))dicyclohexane-1,2-diamine, have been designed, synthesized and characterized. In vitro cytotoxicity evaluation of these metal complexes against human A549, HCT-116, MCF-7 and HepG-2 cell lines have been carried out. All compounds showed antitumor activity to HepG-2, HCT-116 and A549. Particularly, compounds A1 and A2 exhibited significant better activity than other four compounds and A2 even showed comparable cytotoxicity to cisplatin against HepG-2 cell line.  相似文献   

10.
Four organotin(IV) complexes with general formula [RSnCln−1(TCB)] [R = Ph2, n = 2 (2); R = Me, n = 3 (3); R = Bu, n = 3 (4); R = Ph, n = 3 (5)] have been synthesized by direct reaction of thiophene-2-carboxaldehyde benzhydrazone ligand [HTCB, (1)], base and organotin(IV) chloride in absolute methanol under N2 atmosphere. All organotin(IV) complexes were characterized by elemental analyses, molar conductivity, UV-Vis, FT-IR, 1H and 13C NMR spectral studies. Among them, diphenyltin(IV) complex (2) has also been characterized by X-ray crystallography diffraction analyses. The cytotoxicity of the hydrazone ligand as well as its organotin(IV) complexes (2-5) were determined with Artemia salina. While no-choice bioassay was employed on Coptotermes sp. to evaluate the termiticidal effect of all the complexes. Besides, the ligand (1) and its organotin(IV) complexes (2-4) were also tested against five types of bacteria namely Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi.  相似文献   

11.
Some novel ternary and quaternary complexes of titanium(IV) of general formula [Ti(acac)Cl3−n(OOCR)n] (R = C15H31 or C17H35 and n = 1-3) have been synthesized by stepwise substitution of chloride ions of [Ti(acac)Cl3] by straight chain carboxylic acid anions. The complexes are characterized by their elemental analyses, spectral (infrared, FAB mass, 1H NMR and powder XRD) studies, molecular weight determination and molar conductance measurements. Infrared spectra suggested bidentate chelating nature of both acetylacetonate and carboxylate anions in the complexes. Monomeric nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. Molar conductance values indicated the complexes to be non-electrolytes in DMF. The complexes exhibited high resistance to hydrolysis. Their powder XRD data indicated the nano-size for the complexes. The coordination number of titanium(IV) in these complexes were found to be six, seven and eight which has been discussed in detail.  相似文献   

12.
New tetrazolate complexes trans-[PtCl2(RCN4)2]2−, trans-[PtCl4(RCN4)2]2− with Ph3PCH2Ph+ and (CH3)2NH2+ counterions have been obtained by azidation of nitriles coordinated to Pt(II) and Pt(IV) {trans-[PtCl2(RCN)2] and trans-[PtCl4(RCN)2] (R = Et, Ph)} and characterized. The composition and the molecular structure of the complexes obtained were established by the СHN elemental analyses, 1Н and 13С NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray diffraction. The coordination of nitriles to Pt(II) and Pt(IV) is shown significantly activate the azidation: the reaction proceeds with a higher rate and at relatively low temperature compared with the classical 1,3-dipolar addition of azides to nitriles.  相似文献   

13.
The solid-state packing arrays of the platinum(II) trans- and cis-[PtCl2(PzH)2] (1 and 2) and platinum(IV) trans- and cis-[PtCl4(PzH)2] (3 and 4) complexes have been examined and the occurrence of N-H ? Cl hydrogen-bonding associations in those structures has been discussed. Although different packing motifs are observed, in all cases molecules are interacting mostly via NH ? Cl and CH ? Cl associations. The square planar 1 and 2 form stacked arrays of PtCl2(PzH)2, which are supported by NH ? Cl and CH ? Cl hydrogen bonding. The isomeric structure of the complexes and orientation of the PzH rings determine NH ? Cl bonding mode (intermolecular or intramolecular) and also the extent of the platinum-platinum interaction. The synthetic procedures for the preparation of 1-4 along with elemental and X-ray analyses, TG/DTA, FAB+-MS, IR, and 1H and 13C{1H} NMR data are also given in this article.  相似文献   

14.
An array of poly- and mononuclear complexes of Pt(II) with polypyridyl ligands is reported. The framework complexes [(PtCl(2))(2)(bpp)(2)(micro-PtCl(2))](H(2)O)(2) [bpp=2,3-bis(2-pyridyl)pyrazine], [PtCl(2)(micro-tptz)PtClNCPh]Cl [tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], and mononuclear PtCl(2)(NH(2)dpt) [NH(2)dpt=4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole] have been prepared and structurally characterized. Both neutral and ionic complexes are present, with bifunctional and monofunctional Pt(II) moieties, whose size and shape enable them to behave as novel scaffolds for DNA binding. Pt(II) complexes were tested for their biological activity. Cell viability assay and flow cytometric analysis demonstrated that these complexes, particularly [PtCl(2)(micro-tptz)PtClNCPh]Cl, were effective death inducers in human colon rectal carcinoma HT29 cells and their cytotoxic activity was higher than that exerted by cisplatin. Morphological analysis of treated HT29 cells, performed by fluorescence microscopy after Hoechst 33258 staining, showed the appearance of the typical features of apoptosis. Moreover, our results suggested that mitochondria are involved in apoptosis induced by Pt(II) complexes in HT29 cells as demonstrated by dissipation of mitochondrial transmembrane potential.  相似文献   

15.
The syntheses, structures and biological evaluation of a series of cisplatin-like complexes containing bis(imidazole) derivatives - the so-called Joseph ligands - are described. Their cytotoxicity is discussed in terms of their polar surface area, rate of aquation, and lipophilicity. The X-ray crystal structure of the platinum diiodido derivative of dimethyl 2-(di(1H-imidazol-2-yl)methyl)malonate) is reported and compared to those of related systems. Molecular modeling studies are focused on the hydrogen bonding properties of such systems, and their relevance to antitumor activity.  相似文献   

16.
The interaction of the vanadyl (IV) (VO2+) cation with carnosine (the dipeptide β-alanyl-histidine) has been investigated by electron absorption spectroscopy at high ligand-to-metal ratios and at different pH values. The results show that in the range 6.0–8.5, the cation interacts with the imidazole group of four different carnosine molecules and points to the presence of an axially coordinated water molecule. These suppositions were confirmed by the behavior of the VO2+/imidazole system, which was investigated under similar experimental conditions, and supported by previous ENDOR (electron-nuclear double resonance) results. The study was complemented with additional measurements using the glycylglycine, glycylglycine/imidazole, and histidine systems as ligands.  相似文献   

17.
Two platinum(IV) complexes, [Pt(4bt)Cl4] (4) and [Pt(dpyam)Cl4]·DMF (5) (where 4bt is 4,4′-bithiazole and dpyam is 2,2′-dipyridylamine) were prepared from the reaction of H2PtCl6·6H2O with 4,4′-bithiazole and 2,2′-dipyridylamine, respectively, in methanol. Both complexes were fully characterized and their structures were determined by the X-ray diffraction method. These complexes have a bidentate nitrogenous ligand with four chloride anions attached to a Pt(IV) metal in a distorted octahedral environment. These complexes along with three previously reported analogous complexes were used for in vitro cytotoxicity evaluation against four cultures, NIH-3T3, Caco-2, HT-29 and T47D by MTT assay. The methyl group position in the ligand plays an important role in the cytotoxicity of relevant compounds in different cultures. Interestingly, in some cases, the IC50 values of the new complexes were higher for normal cells but lower against cancer cells in comparison with cisplatin, especially in T47D (breast ductal carcinoma).  相似文献   

18.
A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21–91.33?μM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25?μM) and oxaliplatin (8.34?μM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.  相似文献   

19.
The synthesis, characterization and crystal structures of three new copper complexes derived from 1,3-bis(aryl)triazenido ligands bearing either a methoxycarbonyl, methylthio or a hydroxymethyl group in the ortho position of one of the aromatic rings are reported. In addition to the coordination of the triazenido fragment, the Lewis basic groups coordinate to the copper centers to form complexes with different nuclearity: {1-[2-(methoxycarbonyl)phenyl]-3-[4-methylphenyl]}triazene and {1-[2-(methylthio)phenyl]-3-[4-methylphenyl]}triazene form stable dinuclear and tetranuclear Cu(I) complexes, respectively. Reaction of {1-[2-(hydroxymethyl)phenyl]-3-[4-methylphenyl]}triazene with either Cu(I) or Cu(II) results in a novel Cu(II) hexanuclear macrocyclic complex.  相似文献   

20.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号