首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of N,N-3-phenyl-3-benzylaminopropanamide derivatives were identified as novel CETP (cholesteryl ester transfer protein) inhibitors. In our previous study, lead compound L10 was discovered by pharmacophore-based virtual screening (Dong-Mei Zhao et al., 2014). Based on L10 (IC50 8.06 μM), compound HL6 (IC50 10.7 μM) was discovered following systematic structure variation and biological tests. Further optimization of the structure–activity relationship (SAR) resulted in N,N-3-phenyl-3-benzylaminopro panamides derivatives as novel CETP inhibitors. They were synthesized and evaluated against CETP by BODIPY-CE fluorescence assay. Among them, HL16 (IC50 0.69 μM) was a highly potent CETP inhibitor in vitro. In addition, HL16 exhibited favorable HDL-C enhancement and LDL-C reduction in vivo by hamster. The molecular docking of HL16 into the CETP was performed. The binding mode demonstrated that HL16 occupied the CETP binding site and formed interactions with the key amino acid residues.  相似文献   

2.
A combinatorial series of novel quinazolin-4(3H)-ones were synthesised and their structures were established based on spectroscopic data (IR, NMR, EI-MS, and FAB-MS). The compounds were tested for inhibition of the zinc metalloproteinase thermolysin (TLN) utilizing a chemical array-based approach. Some of the compounds were found to inhibit TLN, with IC50 values ranging from 0.0115 μM (compound 3) to 122,637 μM (compound 29). Compound 3 [3-phenyl-2-(trifluoromethyl) quinazolin-4(3H)-one] (IC50 = 0.0115 μM) and compound 35 [3-(isopropylideneamino)-2,2-dimethyl-2,3-dihydroquinazolin-4 (1H)-one] (IC50 = 0.2477 μM) were found to be the most potent inhibitors.  相似文献   

3.
Both c-Met and VEGFR-2 are important targets for the treatment of cancers. In this study, a series of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinazolin-4-amine derivatives were designed and identified as dual c-Met and VEGFR-2 inhibitors. Among these compounds bearing quinazoline and benzimidazole fragments, compound 7j exhibited the most potent inhibitory activity against c-Met and VEGFR-2 with IC50 of 0.05 μM and 0.02 μM, respectively. It also showed the highest anticancer activity against the tested cancer cell lines with IC50 of 1.5 μM against MCF-7 and 8.7 μM against Hep-G2. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the ATP-binding site of c-Met and VEGFR-2, which demonstrates that compound 7j is a potential agent for cancer therapy deserving further researching.  相似文献   

4.
A series of N-(2-morpholinoethyl)nicotinamide (113) and N-(3-morpholinopropyl)nicotinamide derivatives (1426) have been designed, synthesized and evaluated in vitro for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. Most of these synthesized compounds proved to be potent, and selective inhibitors of MAO-A rather than of MAO-B. 5-Chloro-6-hydroxy-N-(2-morpholinoethyl)nicotinamide (13) displayed the highest MAO-A inhibitory potency (IC50 = 0.045 μM) and a good selectivity. 2-Bromo-N-(2-morpholinoethyl)nicotinamide (3) was the most potent MAO-B inhibitor with the IC50 value of 0.32 μM, but it was not selective. Molecular dockings of compound 13 were performed in order to give structural insights regarding the MAO-A selectivity.  相似文献   

5.
A series of new malonamide derivatives were synthesized by Michael addition reaction of N1,N3-di(pyridin-2-yl)malonamide into α,β-unsaturated ketones mediated by DBU in DCM at ambient temperature. The inhibitory potential of these compounds in vitro, against α-glucosidase enzyme was evaluated. Result showed that most of malonamide derivatives were identified as a potent inhibitors of α-glucosidase enzyme. Among all the compounds, 4K (IC50 = 11.7 ± 0.5 μM) was found out as the most active one compared to standard drug acarbose (IC50 = 840 ± 1.73 μM). Further cytotoxicity of 4a4m were also evaluated against a number of cancer and normal cell lines and interesting results were obtained.  相似文献   

6.
Two series of novel 2,3-dihydrobenzo[b][1,4]dioxin-containing 4,5-dihydro-1H-pyrazole derivatives C1C15 and D1D15 have been synthesized and evaluated for their B-Raf inhibitory and anti-proliferation activities. Compound C14 ((3-(4-bromophenyl)-5-(2-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methanone) showed the most potent biological activity against B-RafV600E (IC50 = 0.11 μM) and WM266.4 human melanoma cell line (GI50 = 0.58 μM), being comparable with the positive control Erlotinib and more potent than our previous best compound, while D10 ((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)(5-(3-fluorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)methanone) performed the best in the D series (IC50 = 1.70 μM; GI50 = 1.45 μM). The docking simulation was performed to analyze the probable binding models and poses and the QSAR model was built for reasonable design of B-Raf inhibitors in future. The introduction of 2,3-dihydrobenzo[b][1,4]dioxin structure reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity.  相似文献   

7.
A series of derivatives of Matijing-Su (MTS, N-(N-benzoyl-l-phenylalanyl)-O-acetyl-l-phenylalanol) was synthesized and evaluated for their anti-hepatitis B virus (HBV) activities in 2.2.15 cells. The IC50 of compounds 9c (1.40 μM), 9g (2.33 μM) and 9n (2.36 μM), etc. and the selective index of 9n (45.93) of the inhibition on the replication of HBV DNA were higher than those of the positive control lamivudine [41.59, (IC50: 82.42 μM)]. Compounds 11d, 12a and 12e also exhibited significant anti-HBV activities.  相似文献   

8.
9.
A series of N-substituted amide linked triazolyl β-d-glucopyranoside derivatives (4a-l) were synthesized and their in vitro inhibitory activity against yeast α-glucosidase enzyme [EC.3.2.1.20] was assessed. Compounds 4e (IC50 = 156.06 μM), 4f (IC50 = 147.94 μM), 4k (IC50 = 127.71 μM) and 4l (IC50 = 121.33 μM) were identified as the most potent inhibitors for α-glucosidase as compared to acarbose (IC50 = 130.98 μM) under the same in vitro experimental conditions. Kinetic study showed that both 4e and 4f inhibit the enzyme in a competitive manner with p-nitrophenyl α-d-glucopyranoside as substrate. Molecular docking studies of 4e, 4f, 4k and 4l were also carried out using homology model of α-glucosidase to find out the binding modes responsible for the inhibitory activity. This study revealed that the binding affinity of compounds 4e, 4f, 4k and 4l for α-glucosidase were −8.2, −8.6, −8.3 and −8.5 kcal/mol respectively, compared to that of acarbose (−8.9 kcal/mol). The results suggest that the N-substituted amide linked triazole glycoconjugates can reasonably mimic the substrates for the yeast α-glucosidase.  相似文献   

10.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

11.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

12.
A series of novel (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives had been synthesized and evaluated their biological activities as potential tubulin polymerization inhibitors. Among these compounds, compound 3q exhibited potent antiproliferative activities against three cancer cell lines in vitro, and antitubulin polymerization activity with IC50 of 0.92 μM, which was superior to that of colchicine (IC50 = 1.34 μM). Docking simulation was performed to insert compound 3q into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. These results suggested that compound 3q may be a promising antitubulin agent for the potential treatment of cancer.  相似文献   

13.
5,6,7,8-Tetrahydro-4H-cyclohepta[d]isoxazole derivatives were synthesized and evaluated as a novel class of inhibitors for α-melanocyte-stimulating hormone (α-MSH) induced melanogenesis in a mouse melanoma B16F10 cell line. Compound 8e (IC50 = 0.67 μM), 8h (IC50 = 1.01 μM) and 9b (IC50 = 0.99 μM) exhibited a potent inhibitory activity approximately 85- to 126-fold greater than kojic acid, a well-known potent inhibitor. A biochemical study indicates that the activity of this series should be displayed via down-regulation of the expression of tyrosinase.  相似文献   

14.
We describe in this Letter a new synthetic method for pyrrolin-2-ones as potent plasminogen activator inhibitor-1 (PAI-1) inhibitors. Pyrrolin-2-one derivatives synthesized from N-2-oxoethylamides and aldehydes in aqueous NaOH by one-pot were evaluated for their PAI-1 inhibitory activity. Among these derivatives, compounds 16 and 18 were found to possess potent PAI-1 inhibitory activity (compound 16: IC50: 0.69 μM, compound 18: IC50: 0.65 μM).  相似文献   

15.
A series of novel 4,5-dihydropyrazole derivatives (3a3t) containing hydroxyphenyl moiety as potential V600E mutant BRAF kinase (BRAFV600E) inhibitors were designed and synthesized. Docking simulation was performed to insert compounds 3d (1-(5-(5-chloro-2-hydroxyphenyl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) and 3m (1-(3-(4-chlorophenyl)-5-(3,5-dibromo-2-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) into the crystal structure of BRAFV600E to determine the probable binding model, respectively. Based on the preliminary results, compound 3d and 3m with potent inhibitory activity in tumor growth may be a potential anticancer agent. Results of the bioassays against BRAFV600E, MCF-7 human breast cancer cell line and WM266.4 human melanoma cell line all showed several compounds had potent activities IC50 value in low micromolar range, among them, compound 3d and compound 3m showed strong potent anticancer activity, which were proved by that 3d: IC50 = 1.31 μM for MCF-7 and IC50 = 0.45 μM for WM266.5, IC50 = 0.22 μM for BRAFV600E, 3m: IC50 = 0.97 μM for MCF-7 and IC50 = 0.72 μM for WM266.5, IC50 = 0.46 μM for BRAFV600E, which were comparable with the positive control Erlotinib.  相似文献   

16.
A series of novel berberine derivatives were designed, synthesized, and biologically evaluated as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Among these derivatives, compound 48a, berberine linked with 3-methylpyridinium by a 2-carbon spacer, was found to be a potent inhibitor of AChE, with an IC50 value of 0.048 μM and compound 40c, berberine linked with 2-thionaphthol by a 4-carbon spacer, acted as the most potent inhibitor for BuChE with an IC50 value of 0.078 μM. Kinetic studies and molecular modeling simulations of the AChE-inhibitor complex indicated that a mixed-competitive binding mode existed for these berberine derivatives.  相似文献   

17.
Three series of novel heterocyclic azoles derivatives containing pyrazine (5a5k, 8a8k and 11a11k) have been designed, synthesized, structurally determined, and their biological activities were evaluated as potential telomerase inhibitors. Among the oxadiazole derivatives, compound 5c showed the most potent biological activity against SW1116 cancer cell line (IC50 = 2.46 μM against SW1116 and IC50 = 3.55 μM for telomerase). Compound 8h performed the best in the thiadiazole derivatives (IC50 = 0.78 μM against HEPG2 and IC50 = 1.24 μM for telomerase), which was comparable to the positive control. While compound 11f showed the most potent biological activity (IC50 = 4.12 μM against SW1116 and IC50 = 15.03 μM for telomerase) among the triazole derivatives. Docking simulation by positioning compounds 5c, 8h and 11f into the telomerase structure active site was performed to explore the possible binding model. The results of apoptosis demonstrated that compound 8h possessed good antitumor activity against HEPG2 cancer cell line. Therefore, compound 8h with potent inhibitory activity in tumor growth inhibition may be a potential antitumor agent against HEPG2 cancer cell. Therefore, the introduction of oxadiazole, thiadiazole and triazole structures reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity.  相似文献   

18.
In the present study, a series of new carbazole linked 1H-1,2,3-triazoles (227) were synthesized via click reaction of N-propargyl-9H-carbazole (1) and azides of appropriate acetophenones and heterocycles. Synthesized carbazole triazoles including 7, 9, 10, 19, 20, and 2326 (IC50 = 0.8 ± 0.01–100.8 ± 3.6 μM), exhibited several folds more potent α-glucosidase inhibitory in vitro activity as compared to standard drug, acarbose. Compounds 25, 713, and 1727 did not show any cytotoxicity against 3T3 cell lines, except triazoles 6, and 1416. Among the series, carbazole triazoles 23 (IC50 = 1.0 ± 0.057 μM) and 25 (IC50 = 0.8 ± 0.01 μM) were found to be most active, and could serve as an attractive building block in the search of new non-sugar derivatives as anti-diabetic agents.  相似文献   

19.
A series of novel aryl-2H-pyrazole derivatives bearing 1,4-benzodioxan or 1,3-benzodioxole moiety were designed as potential telomerase inhibitors to enhance the ability of aryl-2H-pyrazole derivatives to inhibit telomerase, a target of anticancer. The telomerase inhibition tests showed that compound 16A displayed the most potent inhibitory activity with IC50 value of 0.9 μM for telomerase. The antiproliferative tests showed that compound 16A exhibited high activity against human gastric cancer cell SGC-7901 and human melanoma cell B16-F10 with IC50 values of 18.07 and 5.34 μM, respectively. Docking simulation showed that compound 16A could bind well with the telomerase active site and act as telomerase inhibitor. 3D-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent telomerase inhibitory activity.  相似文献   

20.
Herein we report a series of novel chloramphenicol amine derivatives as aminopeptidase N (APN)/CD13 inhibitors. All compounds were synthesized starting from commercially available (1S,2S)-2-amino-1-(4-nitrophenyl) propane-1,3-diol. The preliminary biological screening showed that some compounds exhibited potent inhibitory activity against APN. It should be noted that one compound, 13b (IC50 = 7.1 μM), possess similar APN inhibitory activity compared with Bestatin (IC50 = 3.0 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号