首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hepatitis C Virus (HCV) non-structural protein 3 (NS3) protease drug resistance poses serious challenges on the design of an effective treatment. Substrate Envelope Hypothesis, “the substrates of HCV NS3/4A protease have a consensus volume inside the active site called substrate envelope” is used to design potent and specific drugs to overcome this problem. Using molecular docking, we studied the binding interaction of the different inhibitors and protein and evaluated the effect of three different mutations (R155K, D168A and A156V) on the binding of inhibitors. P2–P4 macrocycles of 5A/5B and modified 5A/5B hexapeptide sequences have the best scores against the wild-type protein ?204.506 and ?206.823 kcal/mole, respectively. Also, charged P2–P4 macrocycles of 3/4A and 4A/4B hexapeptide sequences have low scores with the wild-type protein ?200.467 and ?203.186 kcal/mole, respectively. R155K mutation greatly affects the conformation of the compounds inside the active site. It inverts its orientations, and this is because the large and free side chain of K155 which restricts the conformation of the large P2–P4 macrocycle. The conformation of charged P2–P4 macrocycle of 3/4A hexapeptide sequence in wild-type, A156V and D168A proteins is nearly equal; while that of charged P2–P4 macrocycle of 4A/4B hexapeptide sequence is different. Nevertheless, these compounds have a slight increase of Van der Waals volume compared to that of substrates, they are potent against mutations and have good scores. Therefore, the suggested drugs can be used as an effective treatment solving HCV NS3/4A protease drug resistance problem.  相似文献   

2.
Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors – telaprevir, danoprevir, vaniprevir and MK-5172 – in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.  相似文献   

3.
Telaprevir (VX-950) is a highly selective, potent inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease. It has demonstrated strong antiviral activity in patients chronically infected with genotype 1 HCV when dosed alone or in combination with peginterferon alfa-2a. Substitutions of Arg(155) of the HCV NS3 protease domain have been previously detected in HCV isolates from some patients during telaprevir dosing. In this study, Arg(155) was replaced with various residues in genotype 1a protease domain proteins and in genotype 1b HCV subgenomic replicons. Characterization of both the purified enzymes and reconstituted replicon cells demonstrated that substitutions of Arg(155) with these residues conferred low level resistance to telaprevir (<25-fold). An x-ray structure of genotype 1a HCV protease domain with the R155K mutation, in a complex with an NS4A co-factor peptide, was determined at a resolution of 2.5A. The crystal structure of the R155K protease is essentially identical to that of the wild-type apoenzyme (Protein Data Bank code 1A1R) except for the side chain of mutated residue 155. Telaprevir was docked into the x-ray structure of the R155K protease, and modeling analysis suggests that the P2 group of telaprevir loses several hydrophobic contacts with the Lys(155) side chain. It was demonstrated that replicon cells containing substitutions at NS3 protease residue 155 remain fully sensitive to interferon alpha or ribavirin. Finally, these variant replicons were shown to have reduced replication capacity compared with the wild-type HCV replicon in cells.  相似文献   

4.
With three recent market approvals and several inhibitors in advanced stages of development, the hepatitis C virus (HCV) NS3/4A protease represents a successful target for antiviral therapy against hepatitis C. As a consequence of dealing with viral diseases in general, there are concerns related to the emergence of drug resistant strains which calls for development of inhibitors with an alternative binding-mode than the existing highly optimized ones. We have previously reported on the use of phenylglycine as an alternative P2 residue in HCV NS3/4A protease inhibitors. Herein, we present the synthesis, structure–activity relationships and in vitro pharmacokinetic characterization of a diverse series of linear and macrocyclic P2 pyrimidinyloxyphenylglycine based inhibitors. With access to vinyl substituents in P3, P2 and P1′ positions an initial probing of macrocyclization between different positions, using ring-closing metathesis (RCM) could be performed, after addressing some synthetic challenges. Biochemical results from the wild type enzyme and drug resistant variants (e.g., R155 K) indicate that P3–P1′ macrocyclization, leaving the P2 substituent in a flexible mode, is a promising approach. Additionally, the study demonstrates that phenylglycine based inhibitors benefit from p-phenylpyrimidinyloxy and m-vinyl groups as well as from the combination with an aromatic P1 motif with alkenylic P1′ elongations. In fact, linear P2–P1′ spanning intermediate compounds based on these fragments were found to display promising inhibitory potencies and drug like properties.  相似文献   

5.
The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV) RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3) have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.  相似文献   

6.
Faldaprevir类似物(Faldaprevir analogue molecule,FAM)能有效抑制HCV NS3/4A蛋白酶的催化活性,是一种潜在抗HCV先导化合物。通过生物信息学统计分析了已报道的HCV NS3/4A蛋白酶晶体结构,得到了FAM-HCV NS3/4A蛋白酶晶体结构。对FAM-HCV NS3/4A蛋白酶复合物进行了20.4 ns的分子动力学模拟,重点从氢键和结合自由能两个角度分析了二者分子识别中的关键残基及结合驱动力。氢键和范德华力是促使FAM特异性结合到蛋白V132?S139、F154?D168、D79?D81和V55的活性口袋中的主要驱动力,这与实验数据较为吻合。耐药性突变实验分析了R155K、D168E/V和V170T定点突变对FAM分子识别的影响,为可能存在的FAM耐药性提供了分子依据。最后,用自由能曲面和构象聚类两个方法探讨了体系的构象变化,给出体系的4种优势构象,为后续的基于HCV NS3/4A蛋白酶结构的Faldaprevir类似物抑制剂分子设计提供一定的理论帮助。  相似文献   

7.
Hepatitis C virus (HCV) NS3-4A protease is essential for viral replication. All current small molecular weight drugs against NS3-4A are substrate peptidomimetics that have a similar binding and resistance profile. We developed inhibitory peptides (IPs) capping the active site and binding via a novel “tyrosine” finger at an alternative NS3-4A site that is of particular interest for further HCV drug development. The peptides are not cleaved due to a combination of geometrical constraints and impairment of the oxyanion hole function. Selection and optimization through combinatorial phagemid display, protein crystallography, and further modifications resulted in a 32-amino acid peptide with a Ki of 0.53 nm. Inhibition of viral replication in cell culture was demonstrated by fusion to a cell-penetrating peptide. Negligible susceptibility to known (A156V and R155K) resistance mutations of the NS3-4A protease was observed. This work shows for the first time that antiviral peptides can target an intracellular site and reveals a novel druggable site on the HCV protease.  相似文献   

8.
Tsantrizos YS 《Biopolymers》2004,76(4):309-323
The virally encoded serine protease NS3/NS4A is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. Until very recently, the design of inhibitors for the HCV NS3 protease was limited to large peptidomimetic compounds with poor pharmacokinetic properties, making drug discovery an extremely challenging endeavor. In our quest for the discovery of a small-molecule lead that could block replication of the hepatitis C virus by binding to the HCV NS3 protease, the critical protein-polypeptide interactions between the virally encoded NS3 serine protease and its polyprotein substrate were investigated. Lead optimization of a substrate-based hexapeptide, guided by structural data, led to the understanding of the molecular dynamics and electronic effects that modulate the affinity of peptidomimetic ligands for the active site of this enzyme. Macrocyclic beta-strand scaffolds were designed that allowed the discovery of potent, highly selective, and orally bioavailable compounds. These molecules were the first HCV NS3 protease inhibitors reported that inhibit replication of HCV subgenomic RNA in a cell-based replicon assay at low nanomolar concentrations. Optimization of their biopharmaceutical properties led to the discovery of the clinical candidate BILN 2061. Oral administration of BILN 2061 to patients infected with the hepatitis C genotype 1 virus resulted in an impressive reduction of viral RNA levels, establishing proof-of-concept for HCV NS3 protease inhibitors as therapeutic agents in humans.  相似文献   

9.
10.
Background: HCV has become a leading cause of liver cirrhosis and hepatocellular carcinoma and is a major health concern worldwide. To date, there is no vaccine available in the market to tackle this disease, therefore there is a strong need to develop antiviral compounds that can target all genotypes of HCV with the same efficiency. Medicinal plants have low cost and are less toxic therefore, extracts of medicinal plants can serve as important antiviral agents against HCV. This study was designed to screen phytochemicals of Accacia nilotica to find a potent drug candidate that can inhibit HCV infection effectively.Results: Docking of NS3/4A protease and Flavonoids of Accacia nilotica revealed that most of the flavonoids bound deeply with the active site of NS3/4A protease. Compound 01 showed a high ranking on docking score. All other compounds also showed reliable docking scores and had interactions with the binding cavity of NS3/4A protease, suggesting them as a potent drug candidate to block HCV replication.Conclusion: To recognize binding interactions of Accacia nilotica phytochemicals with NS3/4A protease, molecular docking was performed to find potential inhibitor against NS3/4A protease of HCV. After post docking analysis, important interactions were found between active compounds and active site of NS3/4A protease. It can be concluded from the study that phytochemicals of Accacia nilotica may serve as a potential drug candidate with relatively simple structural changes against HCV NS3/4A protease.  相似文献   

11.

Background

Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors.

Methodology/Principal Findings

To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified.

Conclusions/Significance

Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals.  相似文献   

12.
Among the many Hepatitis C virus (HCV) genotypes and subtypes, genotypes 1b and 3a are most prevalent in United States and Asia, respectively. A total of 132 commercially available analogs of a previous lead compound were initially investigated against wild-type HCV genotype 1b NS3/4A protease. Ten compounds showed inhibitory activities (IC50 values) below 10 µM with comparable direct binding affinities (KD values) determined by surface plasmon resonance (SPR). To identify pan-genotypic inhibitors, these ten selected compounds were tested against four additional genotypes (1a, 2a, 3a, and 4) and three drug-resistant mutants (A156S, R155K, and V36M). Four new analogs have been identified with better activities against all five tested genotypes than the prior lead compound. Further, the original lead compound did not show activity against genotype 3a NS3/4A, whereas four newly identified compounds exhibited IC50 values below 33 µM against genotype 3a NS3/4A. Encouragingly, the best new compound F1813-0710 possessed promising activity toward genotype 3a, which is a huge improvement over the previous lead compound that had no effect on genotype 3a. This intriguing observation was further analyzed by molecular docking and molecular dynamics (MD) simulations to understand their different binding interactions, which should benefit future pan-genotypic inhibitor design and drug discovery.  相似文献   

13.
Treatment of hepatitis C virus (HCV) infection has been historically challenging due the high viral genetic complexity wherein there are eight distinct genotypes and at least 86 viral subtypes. While HCV NS3/4A protease inhibitors are an established treatment option for genotype 1 infection, limited coverage of genotypes 2 and/or 3 combined with serum alanine transaminase (ALT) elevations for some compounds has limited the broad utility of this therapeutic class. Our discovery efforts were focused on identifying an NS3/4A protease inhibitor with pan-genotypic antiviral activity, improved coverage of resistance associated substitutions, and a decreased risk of hepatotoxicity. Towards this goal, distinct interactions with the conserved catalytic triad of the NS3/4A protease were identified that improved genotype 3 antiviral activity. We further discovered that protein adduct formation strongly correlated with clinical ALT elevation for this therapeutic class. Improving metabolic stability and decreasing protein adduct formation through structural modifications ultimately resulted in voxilaprevir. Voxilaprevir, in combination with sofosbuvir and velpatasvir, has demonstrated pan-genotypic antiviral clinical activity. Furthermore, hepatotoxicity was not observed in Phase 3 clinical trials with voxilaprevir, consistent with our design strategy. Vosevi® (sofosbuvir, velpatasvir, and voxilaprevir) is now an approved pan-genotypic treatment option for the most difficult-to-cure individuals who have previously failed direct acting antiviral therapy.  相似文献   

14.
The HCV NS3 protease is essential for replication of the hepatitis C virus (HCV) and therefore constitutes a promising new drug target for anti-HCV therapy. Several potent and promising HCV NS3 protease inhibitors, some of which display low nanomolar activities, were identified from a series of novel inhibitors incorporating a trisubstituted cyclopentane dicarboxylic acid moiety as a surrogate for the widely used N-acyl-(4R)-hydroxyproline in the P2 position.  相似文献   

15.
Different highly effective interferon-free treatment options for chronic hepatitis C virus (HCV) infection are currently available. Pre-existence of resistance associated variants (RAVs) to direct antiviral agents (DAAs) reduces sustained virologic response (SVR) rates by 3–53% in hepatitis C virus (HCV) genotype 1 infected patients depending on different predictors and the DAA regimen used. Frequencies of single and combined resistance to NS3, NS5A and NS5B inhibitors and consequences for the applicability of different treatment regimens are unknown. Parallel population based sequencing of HCV NS3, NS5A and NS5B genes in 312 treatment-naïve Caucasian HCV genotype 1 infected patients showed the presence of major resistant variants in 20.5% (NS3), 11.9% (NS5A), and 22.1% (NS5B) with important differences for HCV subtypes. In NS3, Q80K was observed in 34.7% and 2.1% of subtype 1a and 1b patients, respectively while other RAVs to second generation protease inhibitors were detected rarely (1.4%). Within NS5A RAVs were observed in 7.1% of subtype 1a and 17.6% in subtype 1b infected patients. RAVs to non-nucleoside NS5B inhibitors were observed in 3.5% and 44.4% of subtype 1a and 1b patients, respectively. Considering all three DAA targets all subtype 1a and 98.6% of subtype 1b infected patients were wildtype for at least one interferon free DAA regimen currently available. In conclusion, baseline resistance testing allows the selection of at least one RAVs-free treatment option for nearly all patients enabling a potentially cost- and efficacy-optimized treatment of chronic hepatitis C.  相似文献   

16.
There is an urgent need for more efficient therapies for people infected with hepatitis C virus (HCV). HCV NS3 protease inhibitors have shown proof-of-concept in clinical trials, which make the virally encoded NS3 protease an attractive drug target. Product-based NS3 protease inhibitors comprising a P1 C-terminal carboxylic acid have shown to be effective and we were interested in finding alternatives to this crucial carboxylic acid group. Thus, a series of diverse P1 functional groups with different acidity and with possibilities to form a similar, or an even more powerful, hydrogen bond network as compared to the carboxylic acid were synthesized and incorporated into potential inhibitors of the NS3 protease. Biochemical evaluation of the inhibitors was performed in both enzyme and cell-based assays. Several non-acidic C-terminal groups, such as amides and hydrazides, were evaluated but failed to produce inhibitors more potent than the corresponding carboxylic acid inhibitor. The tetrazole moiety, although of similar acidity to a carboxylic acid, provided an inhibitor with mediocre potencies in both assays. However, the acyl cyanamide and the acyl sulfinamide groups rendered compounds with low nanomolar inhibitory potencies and were more potent than the corresponding carboxylic acid inhibitor in the enzymatic assay. Additionally, results from a pH-study suggest that the P(1) C-terminal of the inhibitors comprising a carboxylic acid, an acyl sulfonamide or an acyl cyanamide group binds in a similar mode in the active site of the NS3 protease.  相似文献   

17.
We have used a structure-based drug design approach to identify small molecule inhibitors of the hepatitis C virus (HCV) NS3.4A protease as potential candidates for new anti-HCV therapies. VX-950 is a potent NS3.4A protease inhibitor that was recently selected as a clinical development candidate for hepatitis C treatment. In this report, we describe in vitro resistance studies using a subgenomic replicon system to compare VX-950 with another HCV NS3.4A protease inhibitor, BILN 2061, for which the Phase I clinical trial results were reported recently. Distinct drug-resistant substitutions of a single amino acid were identified in the HCV NS3 serine protease domain for both inhibitors. The resistance conferred by these mutations was confirmed by characterization of the mutant enzymes and replicon cells that contain the single amino acid substitutions. The major BILN 2061-resistant mutations at Asp(168) are fully susceptible to VX-950, and the dominant resistant mutation against VX-950 at Ala(156) remains sensitive to BILN 2061. Modeling analysis suggests that there are different mechanisms of resistance to VX-950 and BILN 2061.  相似文献   

18.
The selectivity of hepatitis C virus (HCV) non-structural protein 3 (NS3) protease inhibitors was determined by evaluating their inhibitory effect on other serine proteases (human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), bovine pancreatic chymotrypsin (BPC)) and a cysteine protease (cathepsin B). For these peptide inhibitors, the P1-side chain and the C-terminal group were the major determinants of selectivity. Inhibitors with electrophilic C-terminal residues were generally non-selective while compounds with non-electrophilic C-terminal residues were more selective. Furthermore, compounds with P1 aminobutyric acid residues were non-selective, while 1-aminocyclopropane-1-carboxylic acid (ACPC) and norvaline-based inhibitors were generally selective. The most potent and selective inhibitors of NS3 protease tested contained a non-electrophilic phenyl acyl sulfonamide C-terminal residue. HLE was most likely to be inhibited by the HCV protease inhibitors, in agreement with similar substrate specificities for these enzymes. The identified structure-activity relationships for selectivity are of significance for design of selective HCV NS3 protease inhibitors.  相似文献   

19.
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4?A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.  相似文献   

20.
The nonstructural protein 3 (NS3) from the hepatitis C virus processes the non-structural region of the viral precursor polyprotein in infected hepatic cells. The NS3 protease activity has been considered a target for drug development since its identification two decades ago. Although specific inhibitors have been approved for clinical therapy very recently, resistance-associated mutations have already been reported for those drugs, compromising their long-term efficacy. Therefore, there is an urgent need for new anti-HCV agents with low susceptibility to resistance-associated mutations. Regarding NS3 protease, two strategies have been followed: competitive inhibitors blocking the active site and allosteric inhibitors blocking the binding of the accessory viral protein NS4A. In this work we exploit the intrinsic Zn+2-regulated plasticity of the protease to identify a new type of allosteric inhibitors. In the absence of Zn+2, the NS3 protease adopts a partially-folded inactive conformation. We found ligands binding to the Zn+2-free NS3 protease, trap the inactive protein, and block the viral life cycle. The efficacy of these compounds has been confirmed in replicon cell assays. Importantly, direct calorimetric assays reveal a low impact of known resistance-associated mutations, and enzymatic assays provide a direct evidence of their inhibitory activity. They constitute new low molecular-weight scaffolds for further optimization and provide several advantages: 1) new inhibition mechanism simultaneously blocking substrate and cofactor interactions in a non-competitive fashion, appropriate for combination therapy; 2) low impact of known resistance-associated mutations; 3) inhibition of NS4A binding, thus blocking its several effects on NS3 protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号