首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
掌叶木居群具有较丰富的遗传多样性,该研究利用9对微卫星(SSR)分子标记揭示了掌叶木(Handeliodendron bodinieri)的遗传多样性。结果表明:观测等位基因数(Na)平均为3.903,有效等位基因数(Ne)平均为2.545,期望杂合度(He)平均为0.521,Shannon’s多态性信息指数(I)为0.962,PIC平均值为0.465。掌叶木的自然分布居群有相对较高的遗传多样性,但由于人为破坏等因素导致该群体濒危,而濒危并不是因为遗传多样性降低而造成的。居群间的遗传分化为掌叶木8个居群间的遗传一致度为(GI=0.849~0.970),遗传距离为(GD=0.032~0.164)。基于Nei’s遗传距离用UPGMA法对掌叶木居群进行聚类,Nei’s的基因分化系数为(G_(st))为0.027,平均Nei标准遗传分化系数(G'_(st)N)为0.031,平均Herick’s标准遗传分化系数(G'_(st)H)为0.064,基因流(N_m)为3.368。AMOVA分析结果表明:掌叶木居群间变异占3%,居群内变异占97%,居群内的遗传分化大于居群间的分化。利用Mantel检测发现,居群间的遗传距离与地理距离显著正相关(r=0.299,P0.05)。该研究结果为掌叶木生物多样性和资源保护与利用提供了更充分的科学依据。  相似文献   

2.
濒危植物连香树居群的遗传多样性和遗传分化研究   总被引:4,自引:3,他引:4  
利用ISSR分子标记技术对濒危植物连香树10个居群的遗传多样性和遗传变异进行了分析,结果表明:连香树物种水平遗传多样性较高,多态位点百分率(PPB)达到69.59%,Nei’s基因多样性指数(H)和Shannon信息指数(I)分别为0.231 3和0.351 4;而在居群水平上,多态位点百分率(PPB)为30.61%,Nei’s基因多样性指数(H)和Shannon信息指数(I)分别为0.115 6和0.173 3。遗传变异分析表明,居群间遗传分化程度高,遗传分化系数(GST)为0.500 3,居群间基因流Nm为0.527 3。Mantel检测,居群间的遗传距离和地理距离之间不存在显著的相关性。生境的片断化使居群间的基因流受阻,可能是导致居群间高遗传分化和居群水平低遗传多样性的主要原因。  相似文献   

3.
采用ISSR 分子标记技术, 对西双版纳分布的兰科濒危植物流苏石斛( Dendrobium fimbriatum) 5 个居群共114 个个体的遗传多样性进行了研究。从100 条引物中筛选出了12 条用于扩增, 共检测到117 个位点, 其中105 个为多态位点。分析结果表明, 流苏石斛居群水平遗传多样性较低。在物种水平上, 流苏石斛多态位点百分率PPB 为89 .74% , Nei′s 基因多样性指数H 为0 . 3227 , Shannon′s 多样性信息指数Hsp 为0 . 4779 ; 在居群水平上, 各个居群的多态位点百分率PPB 差异较大( 6.84% ~ 39.32% ) , 平均值为23.93% , Nei′s 基因多样性指数H 为0 . 0871 , 各个居群的Shannon′s 多样性信息指数Ho 平均为0.1290。AMOVA 分析的结果显示, 流苏石斛的遗传变异大多数存在于居群间, 占总遗传变异的74 . 79%。基于Nei′s遗传多样性分析得出的居群间遗传分化系数Gst = 0 . 7443。各居群间的Nei′s 遗传一致度( I) 范围为0 . 5882~0 . 8331。Mantel 检测发现, 居群间的遗传距离和地理距离之间无显著的正相关关系( r= 0.2419, P=0.2416) 。鉴于流苏石斛的遗传多样性现状和居群遗传结构, 我们建议对流苏石斛居群所有个体实施及时的就地保护, 同时建立迁地保护居群, 促进基因交流。  相似文献   

4.
西双版纳地区流苏石斛遗传多样性的ISSR分析   总被引:5,自引:0,他引:5  
采用ISSR分子标记技术,对西双版纳分布的兰科濒危植物流苏石斛(Dendrobium fimbriatum)5个居群共114个个体的遗传多样性进行了研究。从100条引物中筛选出了12条用于扩增,共检测到117个位点,其中105个为多态位点。分析结果表明,流苏石斛居群水平遗传多样性较低。在物种水平上,流苏石斛多态位点百分率PPB为89.74%,Nei’s基因多样性指数日为0.3227,Shannon’s多样性信息指数见。为0.4779;在居群水平上,各个居群的多态位点百分率PPB差异较大(6.84%~39.32%),平均值为23.93%,Nei’s基因多样性指数H为0.0871,各个居群的Shannon’s多样性信息指数见平均为0.1290。AMOVA分析的结果显示,流苏石斛的遗传变异大多数存在于居群间,占总遗传变异的74.79%。基于Nei’s遗传多样性分析得出的居群间遗传分化系数Gst=0.7443。各居群间的Nei’s遗传一致度(I)范围为0.5882~0.8331。Mantel检测发现,居群间的遗传距离和地理距离之间无显著的正相关关系(r=0.2419,P=0.2416)。鉴于流苏石斛的遗传多样性现状和居群遗传结构,我们建议对流苏石斛居群所有个体实施及时的就地保护,同时建立迁地保护居群,促进基因交流。  相似文献   

5.
樟科濒危植物思茅木姜子遗传多样性的ISSR分析   总被引:6,自引:0,他引:6  
本文采用ISSR标记对中国特有且仅在云南南部狭域分布的樟科濒危植物思茅木姜子(Litseaszemaois)现存8个居群的遗传多样性进行了研究。从96条引物中筛选出了10条,对103个个体进行了扩增,共扩增出77条条带,其中多态性条带为67条。分析结果表明:(1)思茅木姜子的遗传多样性水平很高。在物种水平上,多态位点百分率PPB=87.01%,平均每个位点的有效等位基因数Ne=1.4006,Nei’s基因多样度指数H=0.2466,Shannon多样性信息指数Hsp=0.3826;在居群水平上,PPB=37.99%,Ne=1.2500,H=0.1418,Shannon多样性信息指数Hpop=0.2088。(2)居群间的遗传分化较低。基于Nei’s遗传多样性分析得出的居群间遗传分化系数Gst=0.3700;Shannon’s居群分化系数((Hsp–Hpop)/Hsp)为0.45。AMOVA分析显示:思茅木姜子的遗传变异主要存在于居群内,占总变异的72.99%,居群间的遗传变异占27.01%,表明思茅木姜子属于异交种。(3)两两居群间的Nei’s遗传一致度(I)的范围为0.8233–0.9761。经Mantel检测,居群间的遗传距离和地理距离之间不存在显著的正相关关系(r=0.0925,P=0.6931)。我们推断人类活动的干扰和生境的片断化是导致思茅木姜子濒危现状的主要因素。考虑到目前其遗传多样性水平虽然很高,但各居群个体数量很少,因此应该对思茅木姜子各居群的所有个体实施及时的就地保护;而遗传变异大部分存在于居群内的个体间,所以在迁地保护时应在各居群内大量采样。  相似文献   

6.
采用SSR标记对云南地区的8个长尖叶蔷薇天然居群进行了遗传多样性分析。结果显示:所选用的14对SSR引物,共检测到77个等位位点;在物种水平上,总居群的Nei’s基因多样性指数(He)和香农指数(I)分别为0.3139和0.4747;该居群内遗传变异(65.47%)大于居群间遗传变异(34.53%),说明居群内变异是其居群的主要变异来源;利用Popgene计算出两两居群间的Nei’s遗传一致度(I)和遗传距离(D),其范围分别为0.7879~0.8986和0.1070~0.2384,依据遗传距离可将8个居群分为3组,8个居群并没有严格依据地理距离的远近而聚类;海拔与Nei’s基因多样性的相关系数为0.8771,呈显著正相关。研究结果表明,云南地区的长尖叶蔷薇居群遗传多样性较高,居群间遗传变异存在中度的遗传分化。基于得到的居群遗传信息,建议采取就地保护为主的保护策略,但当个别居群野外的生存环境被自然或者人为因素破坏时,建议采取迁地保护的保护策略。  相似文献   

7.
为揭示海南霸王岭南亚松天然林群落在遗传多样性水平上的差异和遗传分化情况,利用SSR分子标记技术对其6个群落共350个单株进行了遗传多样性分析。结果显示:所选用的12对SSR引物,共检测到38个等位位点。各区域间观察杂合度(Ho)、期望杂合度(He)、Shannon信息指数(I)和Nei’s期望杂合度分别介于0.1933~0.4679、0.4150~0.5321、0.5225~0.7384、0.3451~0.4819之间,说明霸王岭南亚松总体的遗传多样性水平相对较低。居群间的遗传分化系数(Fst)平均为0.0628,说明绝大部分变异(93.72%)存在于群体各居群内。UPGMA聚类可将供试6个群落划分为2类,遗传距离与地理距离有一定相关性,但并没有严格按地理距离聚类,受到了自然地理隔离的影响。  相似文献   

8.
利用ISSR分子标记,对狭域分布在四川省江油涪江上游区段的毛茛科濒危植物距瓣尾囊草(Urophysarockii Ulbrich)现存4个居群的遗传多样性进行了研究。结果显示:(1)14个引物共检测到121条清晰的谱带,其中多样性条带118条;距瓣尾囊草在物种水平上遗传多样性较高,多态位点百分率(PPB)为97.86%,Nei’s基因多样度指数(H)为0.306 9,Shannon’s多样性信息指数(Hsp)为0.466 3;在居群水平上遗传多样性相对偏低,PPB为63.22%,H为0.196 2,Shannon多样性信息指数(Hpop)为0.271 1。(2)3种方法分析显示,居群间遗传分化较低,AMOVA、Gst和(Hsp-Hpop)/Hsp分别为0.341 2、0.295 2和0.42,据此推测距瓣尾囊草繁育系统以异交为主。(3)经Mantel检验,居群间的遗传距离与地理距离之间存在正相关关系(r=0.742 4,P=0.089 0)。研究表明,人类活动的干扰和生境的片断化是导致距瓣尾囊草濒危现状的主要原因,建议对距瓣尾囊草全部居群的全部个体予以及时地就地保护;因遗传变异主要存在于居群内的个体间,故迁地保护时应在各居群内大量采样,以达到最大限度保存距瓣尾囊草遗传多样性的目的。  相似文献   

9.
杜鹃红山茶遗传多样性的ISSR分析   总被引:19,自引:1,他引:18  
运用ISSR分子标记技术,利用筛选的10条ISSR引物,对珍稀濒危植物杜鹃红山茶(Camellia changii Ye)2个亚种群60个单株的遗传多样性进行了研究。结果表明:物种水平上的多态位点百分率(PPB)为55.29%,Nei’s基因多样性指数(H)及Shannon多态性信息指数(I)分别为0.2191和0.3215。种群间的遗传分化系数(GST)仅为0.0922。研究结果揭示了杜鹃红山茶的遗传多样性较低,亚种群间遗传分化较小。小种群和人为活动干扰是杜鹃红山茶现存种群的主要限制因素。影响杜鹃红山茶种群发展的其它因素亟需进一步研究。  相似文献   

10.
采用ISSR分子标记技术,对广西特有珍稀濒危植物小花异裂菊6个野生种群的遗传多样性进行了研究。结果表明:10条引物对141个个体共检测到96个位点,其中29个位点具有多态性,多态位点百分率(PPB)为30.21%。在物种水平上,小花异裂菊PPB为30.21%,Nei’s基因多样性指数(H)为0.105 4,Shannon’s信息指数(I)为0.154 6。在种群水平上,PPB为9%~19%,H为0.021 2~0.051 3,I为0.033 9~0.080 5。基于Nei’s遗传多样性分析所得出的种群间基因分化系数Gst=0.690 5,表明种群内的遗传变异为30.95%,种群间的遗传变异为69.05%,小花异裂菊的遗传变异主要存在于种群间。AMOVA分析结果与前面结果相符。小花异裂菊种群间的基因流(Nm)为0.224 2。从遗传距离看,杨堤和兴坪种群的遗传距离最小,为0.039 8,白沙和阳朔之间的遗传距离最大,为0.160 9。在UPGMA聚类图中,6个种群可分为两组,阳朔和高田为一组,普益、白沙、兴坪、杨堤聚为一组。研究认为小花异裂菊的自交亲和的繁育系统和分布区域的片段化可能是导致种群遗传多样性较低和种群间高遗传分化的主要原因。该研究结果为该物种种质资源的保护提供了科学依据。  相似文献   

11.
通过分析岷江柏的迁地保护居群和野生居群的遗传多样性、遗传结构及居群间基因流,判断迁地保 护岷江柏居群的遗传多样性水平,为其迁地保护提供理论基础。本研究利用GBS(Genotyping-by-Sequencing) 测序技术获得的SNP位点对四川大渡河双江口岷江柏迁地保护移栽苗、苗圃播种苗及3个野生居群进行主成分分析(PCA分析)、聚类分析、分子进化树、遗传多样性和遗传结构分析。经过GBS测序共获得高质量Clean Data 118 321 514 728 bp,并开发了1947 047个tags,从中鉴定到了1 259 610个SNP位点。系统发育进化树显示大部分移栽岷江柏居群和野生岷江柏聚在一起,居群结构分析结果显示交叉验证错误率的谷值确定最优分群数为1。4个岷江柏居群的观测杂合度(Ho)、期望杂合度(He)、Shannon信息指数I(Shi)、近交系数(Fis)、多态信息含量(Pic)的值分别为0.181 5~0.272 0、0.223 2~0.300 3、0.331 0~0.464 9、0.178 0~0.246 5和0.272 2~0.309 2,说明岷江柏居群的遗传多样性水平较高。移栽岷江柏居群的He=0.300 3,Shi=0.464 9,岷江柏居群迁地保护居群遗传多样性总体水平略高于野生居群。野生岷江柏居群中白湾隧道(BW)_vs_松岗镇(SA)的遗传分化指数(Fst)较大,基因流(Nm)较小(Fst=0.091,Nm=2.496),而迁地保护的岷江柏居群与野生岷江柏居群没有明显的遗传分化,居群间的基因交流频繁(Fst<0.05,基因流Nm>4),说明没有明显的分群现象,岷江柏居群迁地保护居群遗传多样性较高。因此,移栽濒危植物是迁地保护过程中较好的方法,本文为以后野生岷江柏迁地保护提供参考,为其他树木种质资源的保存提供理论依据。  相似文献   

12.
光皮桦6个南方天然群体的遗传多样性   总被引:2,自引:0,他引:2  
为揭示中国特有珍贵用材树种光皮桦(Betula luminifera)天然群体的遗传多样性和遗传结构, 采用AFLP分子标记, 分析了采自浙江、福建、江西、广西和贵州5个省区6个天然群体的120份样品。9对引物获得了355个位点, 其中多态性位点323个。分析结果表明光皮桦天然群体具有较高的遗传多样性, 多态位点百分率(PPL)达90.99%, 各群体的PPL和Nei’s基因多样性(hj)分别为93.20-98.60%和0.3143-0.3645; 总群体遗传多样性指数(Ht)为0.3616, 群体间遗传分化系数(Fst)为0.0650, 群体间总的基因流较高(Nm= 3.5962)。AMOVA分析表明群体间的遗传变异占总变异的11.49%, 浙江临安群体和贵州修文群体间的遗传距离最大(0.0665), 江西龙南群体和广西龙胜群体间的遗传距离最小(0.0173), 且遗传结构分析显示这两个群体的部分个体可能来自同一近祖。Mantel检测发现, 群体间的遗传距离与地理距离没有显著相关性(r = 0.423, P = 0.113), 而与两两群体所在地的均温差呈显著相关(r = 0.449, P = 0.017)。结合群体实地调查, 可以得出光皮桦天然群体的遗传多样性和遗传结构的形成不仅与其广域分布、自然杂交、种子特性以及生活史有关, 而且与群体被人为砍伐、生境片断化等因素有重要关系。基于上述结果我们提出了光皮桦天然种群的保护策略。  相似文献   

13.
从分子水平探讨不同居群小蓬竹的遗传多样性以及与环境因子的相关性,揭示其濒危原因,为小蓬竹的保护和后续开发利用提供理论支撑,助力实施极危物种最佳保护策略。运用RAPD标记技术和POPGENE32对16个小蓬竹天然居群进行遗传多样性研究和遗传变异分析。结果表明,8个RAPD随机引物共扩增出105条清晰、重复性高的条带,其中多态性条带有98条,分子量300~2000bp;物种水平多态性位点百分率PPL=93.33%,有效等位基因数Ne=1.4942,Nei’s基因多样性H=0.3005,Shannon多样性指数I=0.4586;落湾(ZY1)居群的遗传多样性水平最高(PPL=60.95%,H=0.2329,I=0.3451),[JP3]桃坡(PT1)居群的最低(PPL=44.76%,H=0.1700,[JP]I=0.2523);16个天然居群的遗传分化系数Gst=0.3231,基因流Nm=1.0478,基于Shannon’s多样性指数的分化系数[(HSP-HPOP)/HSP]为0.3429。小蓬竹居群内存在丰富的遗传多样性,各个天然居群间具有一定的遗传分化但分化水平并不高,主要的遗传变异存在于居群内部。  相似文献   

14.
应用GENALEX6.502、ARLEQUINversion3.5、STRUCTUREv2.3.4、STRUCTURE Harvester、CLUMP和Distruct等软件进行遗传参数估算、主成分分析、遗传变异分析及遗传结构分析。在这项研究中,我们系统地从分布在中国黄河三角洲的12个二色补血草居群中采集到202份个体。我们通过使用共显性的微卫星标记探索微地理遗传结构,旨在解决黄河三角洲二色补血草居群结构和动态问题。结果表明:二色补血草呈中等程度的遗传分化,遗传变异主要存在于居群内,微弱的遗传分化存在于居群间,为(FST=0.067)。香农信息指数平均是1.037,基因流平均是4.106,观测杂合度和期望杂合度平均值分别是0.43和0.529。通过分析二色补血草群体的遗传多样性和遗传结构,旨在为资源的管理、保护和利用提供依据。总之,保护遗传多样性时,应保存尽可能多的居群和特异单株。  相似文献   

15.
蒋艾平  姜景民  刘军 《生态学杂志》2016,27(6):1829-1836
采用13对SSR引物,运用Bioptic Qsep100全自动核酸分析系统,分析了天目山5个海拔檫木群体的遗传多样性和遗传结构及其在不同海拔下的变化模式.结果表明: 天目山檫木群体具有较高的遗传多样性水平,其中期望杂合度和观察杂合度分别为0.84和0.61.根据Shannon指数,天目山檫木中海拔(500~800 m)群体的遗传多样性水平大于低海拔(200 m)和高海拔(1100~1400 m)群体的遗传多样性水平.由基因分化系数和AMOVA分析可知,檫木种群的遗传变异主要存在于群体内.STRUCTURE分析和UPGMA聚类分析表明,中、低海拔被划为一个群体,而高海拔被划为另一个群体.低海拔和中海拔檫木群体遗传距离的差异表明,人为干扰对物种多样性具有负面效应,而自然保护区对物种多样性的保护起到了积极作用.  相似文献   

16.
为了探究柳穿鱼(Linaria vulgaris)不同地理居群的遗传多样性,利用叶绿体DNA的rpl32-trnL片段对包含62个个体的4个柳穿鱼地理居群遗传多样性进行了研究。结果显示:柳穿鱼4个居群中共检测到15种单倍型和76个变异位点,总遗传多样性较高(Hd=0.878,π=0.003 88,K=2.994),遗传变异主要存在于居群内(51.49%),隶属于柳穿鱼虫媒异交繁殖策略的遗传特征;不同地区柳穿鱼居群间遗传分化大(0.466 14),居群间基因交流水平较低(0.29);遗传分化程度与地理距离存在中等程度相关性但不显著(R2=0.36,P> 0.05)。中性检验显示除合水居群(HS)在进化过程中经历过瓶颈效应(Fu and Li’s D=-2.450 49,P<0.05)外,其他居群进化过程符合分子进化的中性理论。本研究结果不仅揭示了繁殖策略、地理隔离及生境干扰等因素塑造我国北方柳穿鱼居群遗传多样性和遗传结构特征,而且也为今后柳穿鱼资源保护策略的选择提供了理论依据。  相似文献   

17.
利用微卫星(SSR)标记对来自山西和陕西两省的7个翅果油树(Elaeagnus mollisDiels)种群进行遗传多样性和遗传结构研究。10对SSR标记共检测到126个位点,其中多态位点114个。在物种水平上,平均多态位点百分率为90.79%,有效等位基因数(Ne)、Nei基因多样性指数(H)和Shannon多样性指数(I)分别为1.6072、0.3166、0.4603;在种群水平上,多态位点百分率为61.99%,有效等位基因数(Ne)、Nei’s基因多样性指数(H)、Shannon多样性指数(I)分别为1.5445、0.2683、0.3815。遗传分化系数GST为0.2074,表明了翅果油树种群的遗传变异主要存在于种群内。基因流Nm为1.9111〉1,说明种群间基因交流可以阻止由于遗传漂变导致的遗传分化。聚类结果表明,翅果油树种群间的遗传距离与地理距离有一定的相关性,经Mantel检验,种群的地理距离与遗传距离之间呈正相关,但未达到显著水平(p〉0.05)。结果表明,遗传多样性水平与物种本身特性和不同干扰生境有关,濒危植物并不一定表现为遗传变异水平的降低。  相似文献   

18.
极小种群野生植物云南蓝果树是国家和云南省实施极小种群野生植物保护工程的代表性物种。为有效保护其遗传资源,本研究通过二代测序技术,对其进行简化基因组测序,开发一批特异性高的单核苷酸多态性标记,分析现存群体的遗传结构和遗传多样性。经过遗传变异检测,本次研究中共获得SNP位点98 498个,通过样品最低测序深度>2,样品缺失率<0.5,次要基因型频率(MAF)>0.05筛选以后,得到有效SNP位点6 309个。基于过滤后的SNP,运用生物信息学分析方法,对云南蓝果树完成了群体的遗传分析,其中:系统进化树分析将云南蓝果树划分为3大类,研究分析了云南蓝果树各分类的私人等位基因数目(Private)、平均观测杂合度(Ho)、平均期望杂合度(He)、核苷酸多样性(π)和平均近交系数(FIS)5个遗传多样性参数;群体结构和主成分分析进一步证明了,云南蓝果树现存植株之间亲缘关系较远,遗传多样性差异较大,具有很高的遗传资源保存价值。本研究结果将为基于遗传管理的云南蓝果树就地保护、遗传资源保存和种群重建等保护工程提供科学依据。  相似文献   

19.
华木莲居群遗传结构与保护单元   总被引:1,自引:0,他引:1  
华木莲(Sinomanglietia glauca)仅分布于江西宜春和湖南永顺, 是我国一级重点保护植物。前人采用RAPD、ISSR以及叶绿体SSCP(single-stranded conformation polymorphism)标记对华木莲进行了居群遗传学研究, 但未包括后发现的湖南居群或未检出居群内遗传变异。为了全面检测华木莲遗传多样性及其空间分布格局, 并据此确定保护单元, 本研究采用细胞核微卫星标记对华木莲所有4个居群共77个个体进行了居群遗传学分析。结果表明, 华木莲具有较低的遗传多样性(平均等位基因数A = 2.604, 平均期望杂合度HE = 0.423)和较高的遗传分化(FST = 0.425)。STRUCTURE和主成分分析(Principal Coordinated Analysis, PCA)将4个居群首先分为江西、湖南两组, 江西的2个居群实际上是同一个自然繁育居群, 而湖南的2个居群则为2个分化明显的自然繁育居群。研究还发现湖南居群存在明显的杂合子过剩现象, 可能是小居群内随机因素造成的。研究结果表明华木莲可能在近期历史上遭受过强烈的瓶颈效应, 导致种群缩小、遗传多样性丧失和居群分化加剧, 需要加强对其进化潜力的保护。在制定保护措施时, 需要考虑其较高的遗传分化水平, 根据遗传结构可以将其划分为3个保护单元, 即湖南居群和江西居群分别为2个进化显著单元, 湖南居群进一步划分为2个管理单元(分别为朗溪乡云盘村和小溪乡鲁家村居群)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号