首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new series of coumarin thiazole derivatives 7a-7t were synthesized, characterized by 1H NMR, 13C NMR and element analysis, evaluated for their α-glucosidase inhibitory activity. The majority of the screened compounds displayed potent inhibitory activities with IC50 values in the range of 6.24 ± 0.07–81.69 ± 0.39 μM, when compared to the standard acarbose (IC50 = 43.26 ± 0.19 μM). Structure–activity relationship (SAR) studies suggest that the pattern of substitution in the phenyl ring is closely related to the biological activity of this class of compounds. Among all the tested molecules, compound 7e (IC50 = 6.24 ± 0.07 μM) was found to be the most active compound in the library of coumarin thiazole derivatives. Enzyme kinetic studies showed that compound 7e is a non-competitive inhibitor with a Ki of 6.86 μM. Furthermore, the binding interactions of compound 7e with the active site of α-glucosidase were confirmed through molecular docking. This study has identified a new class of potent α-glucosidase inhibitors for further investigation.  相似文献   

2.
A series of tetrahydroisoquinoline derivatives were designed, synthesized, and evaluated for their potential as novel orally efficacious retinoic acid receptor-related orphan receptor-gamma t (RORγt) inverse agonists for the treatment of Th17-driven autoimmune diseases. We carried out cyclization of the phenylglycinamide core by structure-based drug design and successfully identified a tetrahydroisoquinoline carboxylic acid derivative 14 with good biochemical binding and cellular reporter activity. Interestingly, the combination of a carboxylic acid tether and a central fused bicyclic ring was crucial for optimizing PK properties, and the compound 14 showed significantly improved PK profile. Successive optimization of the carboxylate tether led to the discovery of compound 15 with increased inverse agonistic activity and an excellent PK profile. Oral treatment of mice with compound 15 robustly and dose-dependently inhibited IL-17A production in an IL23-induced gene expression assay.  相似文献   

3.
β-Carboline family of compounds is a large group of alkaloids widely distributed in nature and exhibits broad-spectrum anti-tumor activities. We designed and synthesized two series of novel 1-carboxamide- and 6-sulfonamide-substituted β-carboline derivatives 7a-p and 12a-b, and their wild type B-Raf kinase inhibitory activities were described. Most compounds showed moderate to excellent inhibitory activities. Among them, 1-carboxamide-6-(N-(3-(dimethylamino)propyl)-sulfamoyl)-β-carboline, 7e exhibited potent activity (IC(50)=1.62 μM), showing the potential for further investigation as a lead compound.  相似文献   

4.
Aminobenzyloxyarylamide derivatives 1a-i and 2a-t were designed and synthesized as novel selective κ opioid receptor (KOR) antagonists. The benzoyl amide moiety of LY2456302 was changed into N-hydroxybenzamide and benzisoxazole-3(2H)-one to investigate whether it could increase the binding affinity or selectivity for KOR. All target compounds were evaluated in radioligand binding assays for opioid receptor binding affinity. These efforts led to the identification of compound 1c (κ Ki = 179.9 nM), which exhibited high affinity for KOR. Moreover, the selectivity of KOR over MOR and DOR increased nearly 2-fold and 7-fold, respectively, compared with (±)LY2456302.  相似文献   

5.
A series of metronidazole–thiazole derivatives has been designed, synthesized and evaluated as potential antibacterial inhibitors. All the synthesized compounds were determined by elemental analysis, 1H NMR and MS. They were also tested for antibacterial activity against Escherichia coli, Bacillus thuringiensis, Bacillus subtilis and Pseudomonas aeruginosa as well as for the inhibition to FabH. The results showed that compound 5e exhibited the most potent inhibitory activity against E. coli FabH with IC50 of 4.9 μM. Molecular modeling simulation studies were performed in order to predict the biological activity of proposed compounds. Toxicity assay of compounds 5a, 5b, 5d, 5e, 5g and 5i showed that they were noncytotoxic against human macrophage. The results revealed that these compounds offered remarkable viability.  相似文献   

6.
Thirty-two quinoline derivatives were designed and synthesized as HIV-1 Tat–TAR interaction inhibitors. All the compounds showed high antiviral activities in inhibiting the formation of SIV-induced syncytium in CEM174 cells. Nine of them with low cytotoxicities were evaluated by Tat dependent HIV-1 LTR-driven CAT gene expression colorimetric enzyme assay in human 293T cells, indicating effective inhibitory activities of blocking the Tat–TAR interaction. Molecular modeling experiments indicated that these compounds may inhibit Tat–TAR interaction by binding to Tat protein instead of TAR RNA.  相似文献   

7.
Peroxisome Proliferator-Activated Receptor γ (PPARγ) is a nuclear receptor important for glucose homeostasis and insulin sensitivity. The anti-diabetic drugs thiazolidinediones improve insulin sensitivity by blocking PPARγ phosphorylation at S273; however, their full agonism on PPARγ also causes significant unwanted side effects. The indole derivative UHC1 displays insulin-sensitizing effect by acting as a partial agonist through the inhibition of PPARγ S273 phosphorylation, but without full agonist-associated side effects; however, its potency leaves much to be desired. Herein we report the design and synthesis of potent indole analogs as partial PPARγ agonists via the structure-activity relationship studies. Our studies revealed that vanillylamine and piperonyl benzylamine at Site 1 are favored to bind PPARγ with either biphenyl or 3-trifluoromethyl benzyl group at Site 2. In particular, compound WO91A with vanillylamine at Site 1 displays highly potent PPARγ binding affinity (IC50 = 16.7 nM), over 30-fold more potent than the parental compound UHC1, yet with less side effect-associated transactivation activity.  相似文献   

8.
This study deals with design and synthesis of novel benzofuran–pyrazole hybrids as anticancer agents. Eight compounds were chosen by National Cancer Institute (NCI), USA to evaluate their in vitro antiproliferative activity at 10−5 M in full NCI 60 cell panel. The preliminary screening of the tested compounds showed promising broad-spectrum anticancer activity. Compound 4c was further assayed for five dose molar ranges in full NCI 60 cell panel and exhibited remarkable growth inhibitory activity pattern against Leukemia CCRF-CEM, MOLT-4, Lung Cancer HOP-92, Colon Cancer HCC-2998, CNS Cancer SNB-75, Melanoma SK-MEL-2, Ovarian Cancer IGROV1, Renal Cancer 786-0, RXF 393, Breast Cancer HS 578T and T-47D (GI50: 1.00–2.71 μM). Moreover, enzyme assays were carried out to investigate the possible antiproliferative mechanism of action of compound 4c. The results revealed that compound 4c has good c-Src inhibitory activity at 10 μM. In addition, molecular docking studies showed that 4c could bind to the ATP Src pocket sites. Fulfilling the Lipinskiís rule of five in addition to its ADME profile and the biological results, all strongly suggest that 4c is a promising Src kinase inhibitor.  相似文献   

9.
A series of novel tripeptidyl epoxyketone derivatives constructed from β-amino acid were designed, synthesized and evaluated as proteasome inhibitors. All target compounds were tested for their proteasome inhibitory activities and selected compounds were tested for their anti-proliferation activities against two multiple myeloma (MM) cell lines RPMI 8226 and NCI-H929. Among them, eleven compounds exhibited proteasome inhibitory rates of more than 50% at the concentration of 1 μg/mL and nine compounds showed anti-proliferation activities with IC50 values at low micromolar level. Compound 20h displayed the most potent proteasome inhibitory activities (IC50: 0.11 ± 0.01 μM) and anti-proliferation activities with IC50 values at 0.23 ± 0.01 and 0.17 ± 0.02 μM against two tested cell lines. Additionally, the poly-ubiquitin accumulation in the western blot analysis supported that proteasome inhibition in a cellular system was induced by compound 20h. All these experimental results confirmed that β-amino acid can be introduced as a building block for the development of proteasome inhibitors.  相似文献   

10.
In a continuing study of hybrid compounds containing the α-bromoacryloyl moiety as potential anticancer drugs, we synthesized a novel series of hybrids 4ah, in which this moiety was linked to a 1,5-diaryl-1,4-pentadien-3-one system. Many of the conjugates prepared (4b, 4c, 4e and 4g) demonstrated pronounced, submicromolar antiproliferative activity against four cancer cell lines. Moreover, compound 4b induced apoptosis through the mitochondrial pathway and activated caspase-3 in a concentration-dependent manner.  相似文献   

11.
Chen J  Liu T  Wu R  Lou J  Cao J  Dong X  Yang B  He Q  Hu Y 《Bioorganic & medicinal chemistry》2010,18(24):8478-8484
A series of novel N-γ-carboline arylsulfonamide derivatives designed based on the common feature of colchicine binding site inhibitors were synthesized and evaluated for their antiproliferative activity in vitro against five human cancer cell lines. Most of the compounds showed moderate to potent cytotoxic activities against all the tested cells. Preliminary mechanism research on one of the most potent compound 6p indicated that it was a potent tubulin polymerization inhibitor, with IC(50) value of 3.8 μM, equivalent to that of CA-4, and arresting cell cycle in G(2)/M phase.  相似文献   

12.
Bone deficiency causes osteoporosis and often decreases quality of life in patients with rheumatoid arthritis. Estrogens are known to protect elderly women from bone loss. Synthesis of new estradiol–bisphosphonate conjugates (E2–BPs) was accomplished and their in vivo activity as bone-specific estrogens were examined. Among them, MCC-565 showed selective estrogenic activity in bones; but it showed little estrogenic activity in the uterus. We also found that the linker moiety in E2–BPs was essential for the absorption and specificity of the conjugates.  相似文献   

13.
Forty β-elemene derivatives were prepared and their antioxidant activity in H2O2-treated human umbilical vein endothelial cells (HUVECs) was first investigated. Among which, the dimer compounds 5r and 5s exhibited the most potent antioxidant activity against reactive oxygen species production. Meanwhile, 5r and 5s led to a significant increase in superoxide dismutase and nitric oxide levels and decrease in malonyldialdehyde and lactate dehydrogenase contents. Furthermore, MTT assay showed that 5r and 5s did not produce obvious cytotoxicity and had significantly cytoprotective effects against oxidative damage on HUVECs.  相似文献   

14.
A novel pharmacophore with theophylline and acetylene moieties was constructed by using a fragment-based drug design and a series of twenty theophylline containing acetylene conjugates were designed and synthesized, and all the compounds were evaluated by enzyme-based in vitro α-amylase inhibition activity. The in vitro evaluation revealed that most of the compounds displayed good inhibitory activities, and among them nine analogs 13–15, 20, 21 and 24–27 were exhibited more or nearly as equipotent inhibitory activity with IC50 values 1.11 ± 0.07, 1.14 ± 0.17, 1.07 ± 0.01 and 1.21 ± 0.03, 1.33 ± 0.09, 1.17 ± 0.01, 1.05 ± 0.02, 1.61 ± 0.04, 1.02 ± 0.03 μM respectively, as compared with standard, acarbose 1.37 ± 0.26 μM. Further, molecular docking simulation studies were done to identify the interactions and binding mode of synthesized analogs at binding site of α-amylase enzyme (PBD ID: 4GQR). Among the synthesized analogs, two compounds 25 and 27 were selected on the basis of α-amylase inhibition activity and evaluated for in vivo anti-diabetic activity by High Fat Diet-Streptozotocin (HFD-STZ) model in normal rats. At the dose of 10 mg/kg, bw, po these compounds have significantly reduced Plasma Glucose level in rats as compared to pioglitazone. The anti-diabetic activity results showed that the animal treated with the compounds 25 and 27 could better reverse and control the progression of the disease compared to the standard.  相似文献   

15.
A series of novel β-pinene-based thiazole derivatives were synthesized and characterized by HRMS, 1H NMR, and 13C NMR analyses as potential antineoplastic agents. Derivatives were evaluated for their anticancer activities in vitro, and the data manifested that most target compounds showed potent anti-proliferative activities against three human cancer cell lines. Especially, compound 5g displayed excellent cytotoxic activity against Hela, CT-26, and SMMC-7721 cell lines with IC50 values of 3.48 ± 0.14, 8.84 ± 0.16, and 6.69 ± 0.15 µM, respectively. To determine the underlying mechanism of compound 5g on cell viability, DAPI staining, Annexin-V/PI staining, JC-1 staining, DCFDA staining, and Western blot analysis were performed. Our data showed that compound 5g inhibited cell proliferation by inducing apoptosis and cell cycle arrest of Hela cells at the G0/G1 phase in a dose dependent manner. Further studies revealed that compound 5g enhanced levels of reactive oxygen species (ROS), caused a decrease in mitochondrial membrane potential, increased the release of mitochondrial cytochrome C, and affected the expression of Bax, Bcl-2, caspase-3 and caspase-9. Thus, our findings indicated that compound 5g induced apoptosis in Hela through ROS-mediated mitochondrial dysfunction signaling pathways.  相似文献   

16.
Design, synthesis and biological evaluation of the imidazopyridine analogs as novel GSK3β inhibitors for treatment of type 2 diabetes mellitus are described. Most of the analogs exhibited excellent inhibitory activities (IC50<44 nM) against glycogen synthase kinase 3β (GSK3β). The structure-activity relationship (SAR) of the imidazopyridine analogs and the binding mode of analog 23 in the catalytic domain of GSK3β, based on our X-ray crystallography study, are described. In particular, analog 28, which was selected as a potential drug candidate for treatment of type 2 diabetes mellitus, exhibited excellent GSK3β inhibition, pharmacokinetic profiles and blood glucose lowering effect in mouse.  相似文献   

17.
Herein we report the design and synthesis of a series of simple phenol amide ERRγ agonists based on a hydrazone lead molecule. Our structure activity relationship studies in this series revealed the phenol portion of the molecule to be required for activity. Attempts to replace the hydrazone with more suitable chemotypes led to a simple amide as a viable alternative. Differential hydrogen-deuterium exchange experiments were used to help understand the structural basis for binding to ERRγ and aid in the development of more potent ligands.  相似文献   

18.
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.  相似文献   

19.
A series of new tetrahydroprotoberberine (THPB) derivatives were designed, synthesized, and tested for their binding affinity towards dopamine (D(1) and D(2)) and serotonin (5-HT(1A) and 5-HT(2A)) receptors. Many of the THPB compounds exhibited high binding affinity and activity at the dopamine D(1) receptor, as well as high selectivity for the D(1) receptor over the D(2), 5-HT(1A), and 5-HT(2A) receptors. Among these, compound 19c exhibited a promising D(1) receptor binding affinity (K(i)=2.53nM) and remarkable selectivity versus D(2)R (inhibition=81.87%), 5-HT(1A)R (inhibition=61.70%), and 5-HT(2A)R (inhibition=24.96%). Compared with l-(S)-stepholidine (l-SPD) (D(1)K(i)=6.23nM, D(2)K(i)=56.17nM), compound 19c showed better binding affinity for the D(1) receptor (2.5-fold higher) and excellent D(2)/D(1) selectivity. Functional assays found compounds 18j, 18k, and 19c are pure D(1) receptor antagonists. These results indicate that removing the C10 hydroxy group and introducing a methoxy group at C11 of the pharmacophore of l-SPD can reverse the function of THPB compounds at the D(1) receptor. These results are in accord with molecular docking studies.  相似文献   

20.
Excessive phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) plays a major role in the dysregulation of mRNA translation and the activation of tumor cell signaling. eIF4E is exclusively phosphorylated by mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) on Ser209. So, MNK1/2 inhibitors could decrease the level of p-eIF4E and regulate tumor-associated signaling pathways. A series of pyridone–aminal derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against hematologic cancer cell lines. In particular, compound 42i (MNK1 IC50?=?7.0?nM; MNK2 IC50?=?6.1?nM) proved to be the most potent compound against TMD-8 cell line with IC50 value of 0.91?μM. Furthermore, 42i could block the phosphorylation level of eIF4E in CT-26 cell line, and 42i inhibited the tumor growth of CT-26 allograft model significantly. These results indicated that compound 42i was a promising MNK1/2 inhibitor for the potent treatment of colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号