首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diseases of the CNS are often complex and involve multiple receptor systems and thus, the treatment options for these diseases must focus on targeting the multiple receptors implicated in the various disorders. Schizophrenia and depression are examples of such diseases and their pharmacotherapy thus depends on agents which target multiple receptors including the dopamine, serotonin and even cholinergic receptors at the same time. In our previous campaign to find multi-receptor ligands, we have identified the benzothiazole 1a as an initial lead molecule. In the current work, we have expanded the structure affinity relationship (SAFIR) of 1a resulting in the identification of a partially restrained butyrophenone 3j as a potent and selective dual 5-HT1A and 5-HT7 receptor ligand. It is expected that compound 3j may serve as a new lead for further development in our search for newer and novel ligands with the potential to treat diseases of CNS origin.  相似文献   

2.
5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.  相似文献   

3.
All clinically-used antipsychotics display similar affinity for both D2 (D2R) and D3 (D3R) receptors, and they likewise act as 5-HT2A receptor antagonists. They provide therapeutic benefit for positive symptoms, but no marked or consistent improvement in neurocognitive, social cognitive or negative symptoms. Since blockade of D3 and 5-HT6 (5-HT6R) receptors enhances neurocognition and social cognition, and potentially improves negative symptoms, a promising approach for improved treatment for schizophrenia would be to develop drugs that preferentially act at D3R versus D2R and likewise recognize 5-HT6R. Starting from the high affinity 5-HT6R ligands I and II, we identified compounds 11a and 14b that behave as 5-HT6R ligands with significant selectivity for D3R over D2R.  相似文献   

4.
Three series of bitobic arylpiperazine-phenyl-hexahydropyrazinoquino- lines analogues were designed, synthesizedand evaluated as a novel class of selective ligands for the dopamine D3 receptor. Compounds 15a (Ki of 11.7 ± 1.8 and 373 nM at D3 and D2, respectively), 15c (Ki of 5.49 and 264 nM at D3 and D2, respectively), 15e (Ki of 14.9 and 325 nM at D3 and D2, respectively), 15i (Ki of 13.8 and 401 nM at D3 and D2, respectively) and 15l (Ki of 13.6 and 870 nM at D3 and D2, respectively) were found to demonstrate good binding affinity and selectivity, and especially compound 15c showeda similar binding affinity and selectivity compared with the contrast drug BP897.  相似文献   

5.
6.
Homodimers of dopamine D2-like receptors are suggested to be of particular importance in the pathophysiology of schizophrenia and, thus, serve as promising targets for the discovery of atypical antipsychotics. This study describes the development of a series of novel bivalent molecules with a pharmacophore derived from the dopamine receptor antagonist haloperidol. These dimers were investigated in comparison to their monomeric analogues for their D2long, D2short, D3, and D4 receptor binding and the ability to bridge two neighboring receptor protomers. Radioligand binding studies provided diagnostic insights when Hill slopes close to two for the bivalent ligand 13 incorporating 22 spacer atoms and a comparative analysis with monovalent control ligands indicated a bivalent binding mode with a simultaneous occupancy of two neighboring binding sites.  相似文献   

7.
A series of ligands with varying heterocyclic cores and substituents that display a range of selectivity’s (up to >100x) for ER-β over ER- are reported.  相似文献   

8.
Protein arginine methyltransferase 5 (PRMT5) is an epigenetics related enzyme that has been validated as a promising therapeutic target for human cancer. Up to now, two small molecule PRMT5 inhibitors has been put into phase I clinical trial. In the present study, a series of candidate molecules were designed by combining key pharmacophores of formerly reported PRMT5 inhibitors. The in vitro PRMT5 inhibitory testing of compound 4b14 revealed an IC50 of 2.71?μM, exhibiting high selectivity over PRMT1 and PRMT4 (>70-fold selective). As expected, 4b14 exhibited potent anti-proliferative activity against a panel of leukemia and lymphoma cells, including MV4-11, Pfeiffer, SU-DHL-4 and KARPAS-422. Besides, 4b14 showed significant cell cycle arrest and apoptosis-inducing effects, as well as reduced the cellular symmetric arginine dimethylation level of SmD3 protein. Finally, affinity profiling analysis indicated that hydrophobic interactions, π-π stacking and cation-π actions made the major contributions to the overall binding affinity. This scaffold provides a new chemical template for further development of better lead compounds targeting PRMT5.  相似文献   

9.
A series of thienylmethylphenylpiperazins was synthesized and tested for affinity towards the five subtypes of dopaminergic receptors. Compound 5f showed more than 1000 folds selectivity to D4 receptors; analogue 5e showed the highest affinity to D4 receptors with Ki 3.9 nM. An interactive SAR approach was adopted and lead to compound 14a with Ki (D4) as low as 0.03 nM. Molecular docking studies showed a potential, first to report arene cation interaction between the D4 unique residue Arg-186 and the ligands’ arene moiety, explaining the importance of having a strong negative electrostatic potential at this area of the compound structure.  相似文献   

10.
Ja-Hyun Baik 《BMB reports》2013,46(11):519-526
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA signaling in mesolimbic neurotransmission are widely believed to modify reward-related behaviors and are therefore closely associated with drug addiction. Recent evidence now suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. Increasing amounts of data from human imaging studies, together with genetic analysis, have demonstrated that obese people and drug addicts tend to show altered expression of DA D2 receptors in specific brain areas, and that similar brain areas are activated by food-related and drug-related cues. This review focuses on the functions of the DA system, with specific focus on the physiological interpretation and the role of DA D2 receptor signaling in food addiction. [BMB Reports 2013; 46(11): 519-526]  相似文献   

11.
Dean B  Pavey G  Scarr E  Goeringer K  Copolov DL 《Life sciences》2004,74(25):3115-3131
In situ radioligand binding with autoradiography and anti-human dopamine D(2) receptor antibodies with Western blots have been used to measure the density of dopamine D(2)-like receptors in the caudate-putamen and pituitary from schizophrenic subjects who did or did not have residual antipsychotic drugs in their tissue at death. There was a significant decrease in the Ki for haloperidol displaceable [(125)I]iodosulpride binding in the pituitary (p < 0.01) and caudate-putamen (p < 0.05) from subjects with schizophrenia with residual drugs in their tissue. There was a significant decrease in the density of [(125)I]iodosulpride in the pituitary (p < 0.001) and a strong trend to a decrease in binding in the caudate-putamen (p = 0.055) from subjects with schizophrenia. By contrast, [(3)H]spiperone binding was decreased in the caudate-putamen (p < 0.05) with a trend to decreased binding in the pituitary (p = 0.07) from subjects with schizophrenia. There was no difference in the density of dopamine D(2) receptors in the caudate-putamen from subjects with schizophrenia (p = 0.31). All the findings on receptor densities were independent of drug status. [(125)I]iodosulpride binds to the dopamine D(2&3) receptors. We have shown that there is no change in the dopamine D(2) receptor in the caudate-putamen from subjects with schizophrenia and therefore, these data would be consistent with there being a decrease in the dopamine D(3) in the caudate-putamen from subjects with schizophrenia. Since dopamine D(3) receptors are absent or present at low concentrations in the pituitary, our data would suggest the dopamine D(2) receptor is decreased in that tissue from schizophrenic subjects.  相似文献   

12.
Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor–receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist 3H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in 3H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.  相似文献   

13.
The evidence for the existence of receptor heteromers opens up a new field for a better understanding of neural transmission. Based on our theory, we have discovered main triplets of amino acid residues in cell-adhesion receptors of marine sponges, which appear also as homologies in several dopamine D2 receptor heteromers of human brain. The obtained results probably mean a general molecular mechanism for receptor–receptor interactions in heteromers originated from the lowest animals (marine sponges).  相似文献   

14.
Reactions of H[AuCl4] with N-substituted 2-pyridine thiocarboxamide ligands 2-(C5H4N)C(S)NHR (R = p-C6H4Me, CH2Ph, Me, p-C6H4OMe) gave cycloaurated derivatives {(C5H4N)C(S)NR}AuCl2, with the ligand bonded as the thiol tautomer through the deprotonated SH group and the pyridine N atom to give a five-membered metallacyclic ring. The X-ray structure determination of the R = CH2Ph derivative shows a square-planar gold(III) complex that dimerises in the solid state by weak Au···S intermolecular interactions. In contrast, in the reaction of H[AuCl4] with 2-(C5H4N)C(S)NHR where R = 2-pyridyl, the ligand was oxidised to give a 1,2,4-thiadiazolo[2,3-a]pyridinium heterocyclic ring that was crystallographically characterised.  相似文献   

15.
多巴胺(Dopamine)(C6H3(OH)2-CH2-CH2-NH2)是人类中枢神经系统的重要儿茶酚胺类神经递质,通过其相应的膜受体而发挥情绪、饮食、运动、认知及外周血等的调节作用。多巴胺受体属于膜G蛋白偶联受体家族。目前发现的多巴胺受体有五种,其中D2受体基因主要分布于脑部。近年来的研究表明,多巴胺D2受体对肿瘤细胞具有抑制作用,对肿瘤的药物治疗具有重要意义。目前,D2受体激动剂已经成为大多数泌乳素瘤的首选治疗药物。本文通过文献回顾,对多巴胺受体在肿瘤的预后和治疗中的作用进行综述。  相似文献   

16.
The stable binaphthol-titanium ladder complexes have been successfully prepared by using bulky alkoxo ligands. From the secondary OR ligand (cyclohexyloxo, 2,4-dimethyl-3-pentyloxo or 2-adamantyloxo) and terially OR ligand (tert-butyloxo, 1-adamantyloxo), partial hydrolysis proceeded to give the μ3-oxo titanium complexes. The use of [Ti(BINOLato)(OEt)2]n made it possible to prepare the Ti(BINOLato)(OR)2 complexes using alcohols (ROH) of high boiling point (R = cyclohexyl, 2-adamantyl, 1-adamantyl). X-ray analyses of [(R)-1,1′-bi-2-naphtholato]bis(O-2,4-dimethyl-3-pentyloxo)titanium and [(R)-3,3′-dimethyl-1,1′-bi-2-naphtholato]bis(2-adamantyloxo)titanium showed a good agreement with the estimated ladder complexes. The catalytic activity of BINOL-Ti catalyst analogues, obtained by partial hydrolysis of Ti(BINOLato)(OR)2 with wet MS 4A was studied in asymmetric glyoxylate-ene reaction by two methods. Moderate to good chemical yields and enantioselectivities were obtained.  相似文献   

17.
Self-assembly of Zn(NO3)2·6H2O, 5-amino-2,4,6-triiodoisophthalic acid (H2atiip) and 4,4′-bipyridine (bpy) or 1,3-di(4-pyridyl)propane (dpp) gave rise to three unusual zinc metal-organic frameworks, Zn2(bpy)2(atiip)2·3H2O·2dmf (1), Zn8(dpp)8(atiip)8·4H2O (2), Zn(dpp)(atiip)·(dmf)·(H2O) (3). All complexes possess 2D layer frameworks constructed from 1D Zn-carboxylate tubular unit for 1, 1D Zn-carboxylate helical chain for 2 and 3. In 1 and 2, the bpy or dpp act as both bridging and blocking ligands and the blocking ligands play an important role in the formation of the 2D layer frameworks. Both 2 and 3 contain two different large metallomacrocycles. Photoluminescence measurements of 1-3 in the solid state at room temperature show that all complexes exhibit luminescence, which can be assigned to an intraligand π → π transition or ligand-to-metal charge transfer (LMCT).  相似文献   

18.
Taking advantage of click chemistry, a library of N-arylpiperazinylmethyl triazoles bearing fluoro substituted appendages was synthesized and the target compounds were investigated for dopamine and serotonin receptor binding. With the aim to bias their hydrophilicity and to optimize their D4 receptor affinity and selectivity, a concise series of triazoles containing fluoroalkyl, fluoroalkoxy, fluoroalkoxyphenyl, and deoxyfluoroglucosyl substituents was studied. The D4 receptor affinity and selectivity could be tuned by altering the chemical moiety attached to the triazole unit. Among the test compounds, the fluoroethoxyphenyl derivative 15b showed weak partial agonism at D4 and a Ki value of 14 nM, while its fluoropropoxyphenyl homologue 16a turned out to act as a neutral D4 antagonist (Ki = 5.1 nM). Both, 15b and 16a revealed an excellent balance between D4 receptor affinity and subtype selectivity, providing lead candidates for the development of 18F-labeled radioligands for D4 receptor imaging studies by positron emission tomography (PET).  相似文献   

19.
The dopamine D3 receptor (D3R) was proposed as a therapeutic target for drug development to treat drug abuse and addiction and neuropsychiatric disorders. Several D3R-selective modulators over the dopamine D2 receptor (D2R) can avoid extrapyramidal symptoms (EPS) and hyperprolactinemia. However, few biased D3R ligands were identified or showed a narrow range of selectivity at the D3R over D2R because of their high sequence homology. Herein, we designed, synthesized and evaluated the binding affinity of a series of bitopic ligands: arypiperazine-phenyl-1,2,4-oxadiazoles. Compound 9e·HCl was the most potent and selective D3R modulator among these bitopic ligands. Molecular modeling revealed that D3R selectivity depends on the divergence of secondary binding pocket (SBP) in D3R and D2R. Specifically, non-conserved Tyr36, EL1 especially non-conserved Thr92 and Gly94, and EL2 Val180, Cys181 and Ser182 of D3R may contribute to D3R specificity over D2R.  相似文献   

20.
As ATP-gated ion channels, P2X4 receptors (P2X4R) of microglial cells play a crucial role in central nervous system (CNS) inflammation. In this study, we used rat microglial cell cultures to examine P2X4R expression in response to stimulation by combination of toll-like receptors (TLRs) and nucleotide-binding oligomerization domain 2 (NOD2) receptors. Various TLR1-9 ligands and NOD2 agonist muramyldipeptide (MDP) were investigated. Our results showed that certain combination of ligands had additive effects on upregulating microglial P2X4R at both mRNA and protein levels, and induced nitric oxide increase and tumor necrosis factor-α production. Thus TLRs and NOD2 combinations are contributors to the signaling cascades resulting in purinergic microglial activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号