首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 23 novel anthraquinone-chalcone hybrids containing amide function was synthesized and structurally characterized. Sixteen compounds exerted strong cytotoxic activities against K562, Jurkat and HL-60 leukemia cell lines and significantly lower cytotoxic effects against normal MRC-5 cells, indicating very high selectivity in their anticancer action. The compounds 6g, 6u and 6v activate apoptosis in K562 cells through the extrinsic and intrinsic apoptotic pathway. The compound 6e triggered apoptosis in K562 cells only through the extrinsic apoptotic pathway. Treatment of K562 cells with each of these four compounds caused decrease in the expression levels of MMP2, MMP9, and VEGF, suggesting their anti-invasive, antimetastatic and antiangiogenic properties. The compounds 6g and 6v downregulated expression levels of miR-155 in K562 cells, while compounds 6e and 6u upregulated miR-155 levels in treated cells, in comparison with control cells. The structure-based 3-D QSAR models for 6f, 6e, 6i and 6l describe pro-apoptotic activity against caspase-3.  相似文献   

2.
Several rhein α-aminophosphonates conjugates (5a5q) were synthesized and evaluated for in vitro cytotoxicity against HepG-2, CNE, Spca-2, Hela and Hct-116 cell lines. Some compounds showed relatively high cytotoxicity. Especially, compound 5i exhibited the strongest cytotoxicity against Hct-116 cells (IC50 was 5.32 μM). All the synthesized compounds exhibited low cytotoxicity against HUVEC cells. The mechanism of compound 5i was preliminarily investigated by Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which indicated that the compound 5i induced apoptosis in Hct-116 cancer cells. Cell cycle analysis showed that these compound 5i mainly arrested Hct-116 cells in G1 stage. The effects of 5i on the activation of caspases expression indicated that 5i might induce apoptosis via the membrane death receptor pathways. In addition, the binding properties of a model analog 5i to DNA were investigated by methods (UV–vis, fluorescence, CD spectroscopy and FRET-melting) in compare with that of rhein. Results indicated that 5i showed moderate ability to interact ct-DNA.  相似文献   

3.
The first example of Ca(OH)2-activated p-regioselective synthesis of chrysin-fused chromene was reported through a cascade Michael/cyclization of chrysin and arylidenemalononitrile. The newly synthesized structurally diverse 2-amino 3-cyano chromene-chrysin hybrids 3 were evaluated for their in vitro anticancer activity, and some of the compounds showed stronger anti-proliferative activity against K562, PC-3, A549 and NCI-H1299 than parent compound chrysin, and demonstrated equipotent potency compared with the reference drug of cisplatin. In particular, compound 3h had the highest cytotoxicity towards K562 cells (IC50 = 6.41 µM). Furthermore, compound 3h induced apoptosis of K562 cells in a concentration-dependent manner, as well as induced the apoptosis possibly through promoting the formation of apoptotic DNA of cancer cell via the intrinsic apoptotic pathway. Thus, our results provide in vitro evidence that compound 3h may be a potential candidate for the development of new anti-tumour drugs.  相似文献   

4.
Seven new chalcones, lanceolein A–G (compounds 5 and 712), as well as five known chalcones (14 and 6), were isolated from the methanolic extract of Coreopsis lanceolata flowers. The chemical structures of 5 and 712 were determined on the basis of spectroscopic data interpretation. All compounds inhibited the production of nitrite oxide (NO) induced by LPS in RAW264.7 macrophage cells. Also, compounds 16 showed moderated cytotoxicity against human colon cancer cell lines, while compounds 712 hardly showed the cytotoxicity. Especially, compounds 2, 5, and 6 exhibited a little higher cytotoxicity on HCT15 cells, with IC50 values of 43.7 ± 2.17 μM, 35.6 ± 0.24 μM, and 47.9 ± 1.18 μM, respectively. In the Tali assay, compounds 2 and 5 increased the numeral of apoptotic cells. These compounds also significantly promoted the expression of apoptotic proteins including PARP and caspase-3.  相似文献   

5.
A series of novel 3-salicyloylpyridines (4ah) were synthesized with good yield by modified Knoevenagel–Stobbel method; o-allylation with allyl bromide lead to formation of compounds (5ah). The synthesized compounds were characterized by spectroscopic techniques and evaluated for cytotoxic activity against human cancer cell lines. Compounds bearing hydroxyl group displayed high cytotoxicity (4ah) as compared to o-allylated molecules (5ah). The most active compound 4b was selected for further investigation to look for mechanism of cell death in prostate cancer (PC-3) cells. The apoptotic bodies induced by 4b in PC-3 cells were scanned by confocal microscopy and confirmed by scanning electron microscopy (SEM). Further results obtained from spectrofluorimetric determination of mitochondrial membrane potential (ΔΨm) and intracellular reactive oxygen species (ROS) in treated PC-3 cells revealed that mitochondria dependent apoptosis was involved in the cell death.  相似文献   

6.
In this work we described the synthesis and evaluation of cytotoxic and apoptotic activity of novel pyrrolopyrimidine derivatives against A549, PC3 and MCF-7 cells. Among the synthesized compounds, 6b, 8a, 9a and 7a, 8b displayed the significant cytotoxic activities against A549 and PC3 cells with IC50 value of 0.35, 1.48, 1.56 and 1.04, 1.89 µM, respectively. It was found that A549 cells were more sensitive to synthesized compounds than PC3 and MCF-7 cells. In order to evaluate the mechanism of cytotoxic activity in A549, compounds 6b, 8a and 9a were selected for further studies. Annexin V binding assay and western blot analysis results revealed that 6b, 8a and 9a induced apoptosis in A549 cells by intrinsic apoptotic pathway through the activation pro-apoptotic proteins such as Bim, Bax, Bak, Puma and deactivation of anti-apoptotic proteins including Bcl-2, Mcl-1 and Bcl-XL accompanied by the activation of caspase-3, caspase-9 and cleavage of PARP. Also, compounds 6b, 8a and 9a triggered apoptosis in HCT116 wt cells via activation of caspase-3 and caspase-9, but not in HCT116 Bax/Bak KO cells, indicating resistance to 6b, 8a and 9a treatment.  相似文献   

7.
A new series of novel Podophyllotoxin-like benzo[b]furo[3,4-e][1,4]diazepin-1-ones possessing structural elements of 4-aza-2,3-didehydropodophyllotoxins with central diazepine ring was designed and synthesized as anti-cancer agents. In initial assessment, the cytotoxic activity of the synthesized compounds was evaluated against three cancer cell lines including MCF-7, PC3 and B16-F10 employing the MTT assay. Some of compounds (12h, 13a, 13c and 14b) showed significant cytotoxic activity. So, we investigated the cytotoxicity of compounds 12h, 13a, 13c and 14b, along with podophyllotoxin as the reference drug in different cancer cell lines including A549, A2780, DU145, HeLa, and normal Huvec cell line. Among these four compounds, 13c showed promising antiproliferative activity against all cancer cells stronger than the other compounds and comparable to reference drug podophyllotoxin in some cancer cells. All these four compounds did not show significant cytotoxicity on normal Huvec cell line. The flow cytometry analysis of the MCF-7, PC3 and A2780 human cancer cell lines treated with 13c showed that 13c, induced apoptosis in the MCF-7, PC3 and A2780 human cancer cell lines, which is in good agreement to its cytotoxic activity as well. Compound 13c did not show significant influence on tubulin assembly and exert its cytotoxic effects via induction of apoptosis and has potent and selective cytotoxic effects in cancer cells.  相似文献   

8.
In this Letter, the anticancer activity of novel rosin-derivatives introducing indicated side chains at position C18 of dehydroabietic acid (DHAA) was reported. Gratifyingly, all of these derivatives showed significantly cytotoxicity toward diverse human carcinoma cell lines. We found the compound 4 could induce cell membrane damage at high concentration as well as cell apoptosis at low concentration. However, compound 5, attachment of quinidine to dehydroabietic acid via thiourea bond, only induced apoptotic cell death. In addition, all these active compounds induced apoptosis mainly through mitochondrial-dependent pathway. Interestingly, compound 5 exhibited the highest anticancer activity and little toxicity to normal cells compared with the other derivatives. Therefore, 5 merits further investigation as a potential agent for future anticancer treatment.  相似文献   

9.
《Phytomedicine》2014,21(3):315-322
BackgroundResistance of cancer to chemotherapy remains a challenging issue for scientists as well as physicians. Naturally occurring xanthones possess a variety of biological activities such as anti-inflammatory, anti-bacterial, and anti-cancer effects. The present study was aimed at investigating the cytotoxicity and the modes of action of three naturally occurring xanthones namely, morusignin I (1), 8-hydroxycudraxanthone G (2) and cudraxanthone I (3) against a panel of nine cancer cell lines, including various sensitive and drug-resistant phenotypes.MethodsThe cytotoxicity of the compounds was determined using a resazurin reduction assay, whereas the caspase-Glo assay was used to detect the activation of caspases 3/7, caspase 8 and caspase 9 in cells treated with compounds 3. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells, analysis of mitochondrial membrane potential (MMP) as well as measurement of reactive oxygen species (ROS).ResultsCompounds 1 and 3 inhibited the proliferation of all tested cancer cell lines including sensitive and drug-resistant phenotypes. Compound 2 was active on 8/9 cell lines with the IC50 values ranging from 16.65 μM (against leukemia CCRF-CEM cells) to 70.38 μM (against hepatocarcinoma HepG2 cells). The IC50 value ranged from 7.15 μM (against CCRF-CEM cells) to 53.85 μM [against human glioblastoma U87MG.ΔEGFR cells] for compound 1, and from 2.78 μM (against breast cancer MDA-MB231 BCRP cells) to 22.49 μM (against U87MG cells) for compound 3. P-glycoprotein expressing CEM/ADR5000 cells were cross-resistant to compounds 1 and 2 (4.21- to 610-fold) while no cross-resistance or even collateral cross-sensitivity were observed in other drug-resistant cell lines to the three compounds. Normal AML12 liver cells were more resistant to the three compounds than HepG2 liver cancer cells. Compounds 3 arrested the cell cycle between G0/G1 and S phases, strongly induced apoptosis via caspases 3/7, caspase 8, caspase 9 activation and disrupted the MMP in CCRF-CEM cells.ConclusionsThe cytotoxicity of the studied xanthones and especially compound 3 deserve more detailed exploration in the future to develop novel anticancer drugs against sensitive and otherwise drug-resistant phenotypes.  相似文献   

10.
A series of seventeen tetrazole derivatives of 1,7,7-trimethyl-[2.2.1]bicycloheptane were synthesized using click chemistry methodology and characterized by spectral data. Studies of cytotoxicity and in vitro antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells of the compounds obtained were performed. The structure-activity relationship analysis suggests that to possess virus-inhibiting activity, the compounds of this group should bear oxygen atom with a short linker (C2-C4), either as a hydroxyl group (18, 19, 29), keto-group (21) or as a part of a heterocycle (24). These compounds demonstrated low cytotoxicity along with high anti-viral activity.  相似文献   

11.
In an attempt to arrive at a more potent antitumor agent than the parent natural saponin hederacolchiside A1, 23 hederacolchiside A1 derivatives (4a-4w) were synthesized via Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition and screened in vitro for cytotoxicity against six human cancer cell lines. The structure-activity relationship of these compounds was elucidated, and the biological screening results showed that most of the compounds exhibited moderate to high levels of antitumor activities against the tested cell lines and some of them displayed more potent inhibitory activities compared with hederacolchiside A1. Compound 4f showed a 2- to 7-fold more potent activity than hederacolchiside A1. The mechanistic study of 4f revealed that this compound can induce cell apoptosis in HepG2 cells via mitochondrial-mediated intrinsic pathways.  相似文献   

12.
Chemical investigation of the roots of Croton crassifolius led to the isolation of five pyran-2-one derivatives, including two brand new compounds (12), one new natural product (3) and two known compounds (45). Their structures and absolute configurations were established by spectroscopic analyses as well as comparison between the calculated optical rotation (OR) values with the experimental data. Interestingly, the new compound 1 showed an unusual negative chemical shift at H-11. It is well known that negative chemical shift values of 1H NMR spectrum are extremely rare in natural products. Such a negative chemical shift of 1H NMR spectrum was reproduced by density functional theory (DFT) calculations and explained by the shielding effect from the pyran-2-one ring over the hydrogen atom in the 3D conformations. Then, MTT assay was applied to evaluate the cytotoxicity of the isolated compounds (15) against two liver cancer cell lines (HepG2 and MHCC97H). The results suggested that compound 1 displayed the highest cytotoxicity with an IC50 value of 9.8 μM against HepG2 cells. Moreover, there was no obvious cytotoxicity of compounds 15 on normal liver cell line LO2. Furthermore, the mechanism of apoptosis induction in compound 1-treated HepG2 cells was investigated. The results showed that compound 1 could induce apoptosis via p53-mediated Ras/Raf/ERK suppression in HepG2 cells.  相似文献   

13.
Three new palladium complexes with general formula [PdCl2L2], where L = heterofunctional organoarsenic ligand: (2-isopropoxyphenyl)diphenylarsine (1), (2-methoxyphenyl)-diphenylarsine (2) and (2-hydroxyphenyl)diphenylarsine (3) have been synthesized and fully characterized, including X-ray crystallographic data. Their potential antitumor effect and genotoxicity have been studied as well. The viability test performed on human tumor (MLS) and normal (Hfl-1) cell lines indicates significant cytotoxicity of complexes, which is higher in tumor cells than in normal cells. The lethal doses are comparable with those of standard metal-based chemotherapeutical drugs (carboplatin and oxaliplatin). These palladium complexes exhibit a higher cytotoxicity against tumor cells as against normal cells in vitro. A new static cytometric method was developed and simultaneously the classic AnnexinV test was performed. Complex 2 has an important capacity to induce apoptosis in tumor cells. The apoptotic process is triggered due to the interaction of these complexes with secondary structure of DNA in treated cells. The alkaline single-cell gel assay shows that the level of DNA damages induced by compounds 2 and 3 are significantly higher in tumor cells as in normal cells. These studies shown that complexes 1, 2 and 3 have biologic activity, the effect of complex 2 being superior to its platinum analogues, attributable to its structure.  相似文献   

14.
A facile method for the construction of double bond between 3-ylidene oxindoles and α-azido ketones has been successfully accomplished with a mild base. This method features azido reduction with concomitant double bond formation to provide the new class of bioactive enamino-2-oxindoles. These new compounds were screened for their in vitro cytotoxic potential on selected human cancer cell lines such as colon, lung, breast, and cervical cancer cells. Among them, representative compounds 3a, 3h, 3k, 3p, 3w and 3x showed notable cytotoxicity profile with IC50 values ranging from 1.40?±?0.10 to 28.7?±?0.36?µM. Compound 3k displayed most potent cytotoxicity against lung cancer (NCI-H460) cells with an IC50 value of 1.40?±?0.10?µM. 3k also arrested the G2/M phase of the cell cycle and induced distinctive apoptotic features on lung cancer cells. The apoptosis induction is supported by various cellular assays such as AO/EB, DAPI, and DCFDA staining studies including clonogenic assay. Extent of apoptosis was also analyzed by Annexin binding and JC-1 staining. Moreover, this method is amenable for the generation of a library of new class of stable bioactive enamino-2-oxindoles.  相似文献   

15.
We synthesized a new series of PBD-hybrid derivatives having tethered triazoles and investigated for their cytotoxicity. The studies indicated that cis-olefin compounds induce higher cytotoxicity with increase in the G1 cell cycle phase compared with the trans-compounds. Quantitative RT-PCR assay indicated that compounds (16ad) induced G1 phase arrest through down-regulation of cyclin D1 and up-regulation of p21, p27, and p53 mRNA expressions. Compounds 16ad induced A375 early apoptosis as detected by flow cytometry after double-staining with annexin V and propidium iodide. Moreover, the Western blot analysis showed that A375 treated by compounds (16ad) resulted in decreased levels of Bcl-2 and Bcl-xL, increased levels of Bax and Bad, and caspase/PARP degradation to identify apoptotic cells.  相似文献   

16.
Using matrine (1) as the lead compound, a series of new 14-(N-substituted-2-pyrrolemethylene) matrine and 14-(N-substituted-indolemethylene) matrine derivatives was designed and synthesized for their potential application as anticancer agents. The structure of these compounds was characterized by 1H NMR, 13C NMR and ESI-MS spectral analyses. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (SMMC-7721, A549 and CNE2). The results revealed that compound A6 and B21 displayed the most significant anticancer activity against three cancer cell lines with IC50 values in range of 3.42–8.05?μM, which showed better activity than the parent compound (Matrine) and positive control Cisplatin. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound A6 and B21 could significantly induce the apoptosis of SMMC-7721 and CNE2 cells in a dose-dependent manner. The cell cycle analysis also revealed that compound A6 could cause cell cycle arrest of SMMC-7721 and CNE2 cells at G2/M phase.  相似文献   

17.
For the development of novel anticancer agents, we designed and synthesized a total of 37 perimidine o-quinone derivatives containing the o-quinone group at the A or B ring and different substituents (alkyl groups, aryl groups or heterocycles) at the C ring of the compounds. The structure-activity relationships (SARs) were established based on the cytotoxicity data of compounds from the HL-60, Huh7, Hct116, and Hela cell lines. The cytotoxicity results showed that most compounds exhibited potent cytotoxicity. In particular, compound b-12 showed the best anti-proliferative activity (IC50 ≤ 1 μM) against four cancer cell lines and strong potency against the HL-60/MX2 (0.47 μM) cell line, which is resistant to Topo II poisons. Further studies showed that b-12 exhibited potent Topo IIα inhibitory activity (IC50 = 7.54 μM) compared with Topo I, which acted as a class of non-intercalative Topo IIα catalytic inhibitor by inhibiting the ATP binding site of Topo II. Cell apoptosis and cell cycle assays confirmed that b-12 could induce the apoptosis of Huh7 cells in a dose-dependent manner.  相似文献   

18.
A platform for screening drugs for their ability to protect neuronal cells against cytotoxicity was developed. Nerve growth factor (NGF) differentiates PC12 cells into nerves, and these differentiated PC12 cells enter apoptosis when challenged with 6-hydroxydopamine (6-OHDA). A screening spectrophotometer was used to assay cytotoxicity in these cells; pretreatment with test samples allowed identification of compounds that protected against this neuronal cytotoxicity. The 95% ethanol extract of Phoenix hanceana Naudin var. formosana Beccari. (PH) showed potential neuroprotective activity in these assays. The PH ethanol extract was further fractionated by sequential partitioning with n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and water. Subsequent rounds of assaying resulted in the isolation of ten constituents, and their structures were characterized by various spectroscopic techniques and identified by comparison with previous data as: isoorientin (1), isovitexin (2), veronicastroside (3), luteolin-7-O-β-d-glucopyranoside (4), isoquercitrin (5), tricin-7-neohesperidoside (6), tricin-7-O-β-d-gluco-pyranoside (7), (+)-catechin (8), (−)-epicatechin (9), and orientin 7-O-β-d-glucopyranoside (10). Among these compounds, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4) and (+)-catechin (8) showed significant neuroprotective activity in cell viability (WST-8 reduction), anti-apoptosis (Annexin V-FITC/propidium iodide double-labeled flow cytometry), and cellular ROS scavenging assays (besides isovitexin (2)), as well as a decreased caspase-8 activity in 6-OHDA-induced PC12 cells. Hence, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4), and (+)-catechin (8) protected PC12 cells from 6-OHDA-induced apoptotic neurotoxicity.  相似文献   

19.
A series of 2-aminodihydroquinoline analogs were synthesized and their in vitro cytotoxicities against metastatic breast adenocarcinoma cell line MDA-MB-231 were tested. Five out of 16 compounds exhibited promising activity and structure–activity relationship revealed major role of dialkylaminoethyl substituents on dihydroquinoline ring for the activity. Two compounds, 5f and 5h, presented cytotoxicity with IC50 values of about 2 μM when the compounds were treated to the cells without serum. The cell proliferation was inhibited mildly when the cells cultured with serum. Flow cytometry analyses showed that those compounds arrested the cells at G2/M checkpoint when the cell cycle is active while they induce apoptosis when the cell growth is restricted due to the absence of growth factors. These results suggest the two novel compounds may have anticancer activity through cell cycle arrest and pro apoptosis mechanism.  相似文献   

20.
Chemically modified versions of bioactive substances, are particularly useful in overcoming barriers associated with drug formulation, drug delivery and poor pharmacokinetic properties. In this study, a series of fourteen (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate (215) were prepared by using a one step synthesis from 1 previously described by us as potential antimalarial and antitumor agent. Molecules were evaluated as inhibitors of β-hematin formation, where most of them showed a significant inhibition value (%?>?70). The best inhibitors were tested in vivo as potential antimalarials in mice infected with P. berghei ANKA, chloroquine susceptible strain. Three of them (5, 6, and 15) displayed antimalarial activity comparable to that of chloroquine. Also, molecules were evaluated for their cytotoxic activity against two human cancer cell lines (Jurkat E6.1 and HL60) and primary culture of human lymphocytes. Most of the synthesized compounds, except for analogs 26, 8, and 1012, displayed cytotoxicity against cancer cell lines without affecting normal cells. The potency of the compounds was 15???1, and 14?>?7, 9, and 13. Flow cytometry analysis demonstrated an increase in apoptotic cell death after 24?h. The compounds may affect tumor cell autophagy and consequently increase cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号