共查询到20条相似文献,搜索用时 15 毫秒
1.
Xin B Tang W Wang Y Lin G Liu H Jiao Y Zhu Y Yuan H Chen Y Lu T 《Bioorganic & medicinal chemistry letters》2012,22(14):4783-4786
β-Carboline family of compounds is a large group of alkaloids widely distributed in nature and exhibits broad-spectrum anti-tumor activities. We designed and synthesized two series of novel 1-carboxamide- and 6-sulfonamide-substituted β-carboline derivatives 7a-p and 12a-b, and their wild type B-Raf kinase inhibitory activities were described. Most compounds showed moderate to excellent inhibitory activities. Among them, 1-carboxamide-6-(N-(3-(dimethylamino)propyl)-sulfamoyl)-β-carboline, 7e exhibited potent activity (IC(50)=1.62 μM), showing the potential for further investigation as a lead compound. 相似文献
2.
《Bioorganic & medicinal chemistry letters》2014,24(15):3407-3411
Forty β-elemene derivatives were prepared and their antioxidant activity in H2O2-treated human umbilical vein endothelial cells (HUVECs) was first investigated. Among which, the dimer compounds 5r and 5s exhibited the most potent antioxidant activity against reactive oxygen species production. Meanwhile, 5r and 5s led to a significant increase in superoxide dismutase and nitric oxide levels and decrease in malonyldialdehyde and lactate dehydrogenase contents. Furthermore, MTT assay showed that 5r and 5s did not produce obvious cytotoxicity and had significantly cytoprotective effects against oxidative damage on HUVECs. 相似文献
3.
Several novel tetrahydro-β-carboline derivatives with amino acid residues at the 2-position and a glucosamine group at the 3-position of the tetrahydro-β-carboline nucleus were synthesized from a readily available starting material, tryptophane, and were evaluated for their anti-inflammatory activity in the present study. Our results showed that all of the derivatives tested exhibited a significant inhibition of xylene-induced inflammation in mice. 相似文献
4.
《Bioorganic & medicinal chemistry》2016,24(8):1853-1865
A series of novel multipotent 2-piperidone derivatives were designed, synthesized and biologically evaluated as chemical agents for the treatment of Alzheimer’s disease (AD). The results showed that most of the target compounds displayed significant potency to inhibit Aβ1–42 self-aggregation. Among them, compound 7q exhibited the best inhibition of Aβ1–42 self-aggregation (59.11% at 20 μM) in a concentration-dependent manner. Additionally, the compounds 6b, 7p and 7q as representatives were found to present anti-inflammation properties in lipopolysaccharide (LPS)-induced microglial BV-2 cells. They could effectively suppress the production of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6. Meanwhile, compound 7q could prevent the neuronal cell SH-SY5Y death by LPS-stimulated microglia cell activation mediated neurotoxicity. The molecular modeling studies demonstrated that compounds matched the pharmacophore well and had good predicted physicochemical properties and estimated IC50 values. Moreover, compound 7q exerted a good binding to the active site of myeloid differentiation factor 88 (MyD88) through the docking analysis and could interfere with its homodimerization or heterodimerization. Consequently, these compounds emerged as promising candidates for further development of novel multifunctional agents for AD treatment. 相似文献
5.
A series of pterostilbene β-amino alcohol derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease (AD). In vitro assays demonstrated that most of the derivatives were selective acetylacholinesterase (AChE) inhibitors with moderate multifunctional properties. Among them, compound 5f exhibited the best inhibitory activity for EeAChE (IC50 = 24.04 μM), that was better than pterostilbene under our experimental condition. In addition, compound 5f displayed reasonable antioxidant activity and could confer significant neuroprotective effect against H2O2-induced PC-12 cell injury. Moreover, 5f also showed self-induced Aβ1-42 aggregation inhibitory potency and displayed high BBB permeability in vitro. These multifunctional properties highlight 5f as a promising candidate for further studies directed to the development of novel drugs against AD. 相似文献
6.
Jing Chen Xiaowu Dong Tao Liu Jianshu Lou Chaoyi Jiang Wenhai Huang Qiaojun He Bo Yang Yongzhou Hu 《Bioorganic & medicinal chemistry》2009,17(9):3324-3331
Three series of γ-carboline derivatives were designed and synthesized. All the compounds were tested for their cytotoxic activities in vitro against five human tumor cell lines (A549, SGC, HCT116, MCF-7, K562) and one multi-drug resistant subline (K562R). Most compounds showed moderate to potent cytotoxic activities against the tested cell lines. Sulfonate 11f exhibited more potent cytotoxic activities against almost all of the tested cells in comparison with the positive control, taxol, with IC50 values ranging from 0.15 to 4.5 μM. The structure–activity relationships were discussed and a statistically reliable QSAR model (r2 = 0.936, q2 = 0.581) was established by the CoMFA analysis performed using the cytotoxic data against K562 cell line as a template. 相似文献
7.
Three series of novel β-amino alcohols possessing an N-anthranyl group have been obtained using tryptophan as the major starting material. These compounds were screened for cytotoxic activity against five human cancer cell lines in vitro by MTT assay, and some of them exhibited potential ability to be anticancer agents. Structure-activity relationship was carefully investigated. Only the compounds possessing small substituents (H or CH3) at C-6 position showed the same activity as cisplatin (DDP) did. 相似文献
8.
Chen J Liu T Wu R Lou J Cao J Dong X Yang B He Q Hu Y 《Bioorganic & medicinal chemistry》2010,18(24):8478-8484
A series of novel N-γ-carboline arylsulfonamide derivatives designed based on the common feature of colchicine binding site inhibitors were synthesized and evaluated for their antiproliferative activity in vitro against five human cancer cell lines. Most of the compounds showed moderate to potent cytotoxic activities against all the tested cells. Preliminary mechanism research on one of the most potent compound 6p indicated that it was a potent tubulin polymerization inhibitor, with IC(50) value of 3.8 μM, equivalent to that of CA-4, and arresting cell cycle in G(2)/M phase. 相似文献
9.
Yoshio Nakagawa Toshinari Suzuki Hidemi Ishii Akio Ogata Dai Nakae 《Chemico-biological interactions》2010,188(3):393-403
The cytotoxic effects and biotransformation of harmine and harmaline, which are known β-carboline alkaloids and potent hallucinogens, were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to harmine caused not only concentration (0–0.50 mM)- and time (0–3 h)-dependent cell death accompanied by the formation of cell blebs and the loss of cellular ATP, reduced glutathione, and protein thiols but also the accumulation of glutathione disulfide. Of the other analogues examined, the cytotoxic effects of harmaline and harmol (a metabolite of harmine) at a concentration of 0.5 mM were less than those of harmine. The loss of mitochondrial membrane potential and generation of oxygen radical species in hepatocytes treated with harmine were greater than those with harmaline and harmol. In the oxygen consumption of mitochondria isolated from rat liver, the ratios of state-3/state-4 respiration of these β-carbolines were decreased in a concentration-dependent manner. In addition, harmine resulted in the induction of the mitochondrial permeability transition (MPT), and the effects of harmol and harmaline were less than those of harmine. At a weakly toxic level of harmine (0.25 mM), it was metabolized to harmol and its monoglucuronide and monosulfate conjugates, and the amounts of sulfate rather than glucuronide predominantly increased with time. In the presence of 2,5-dichloro-4-nitrophenol (50 μM; an inhibitor of sulfotransferase), harmine-induced cytotoxicity was enhanced, accompanied by decrease in the amount of harmol-sulfate conjugate, due to an increase in the amount of unconjugated harmol and the inhibition of harmine loss. Taken collectively, these results indicate that (a) mitochondria are target organelles for harmine, which elicits cytotoxicity through mitochondrial failure related to the induction of the MPT, mitochondrial depolarization, and inhibition of ATP synthesis; and (b) the toxic effects of harmine are greater than those of either its metabolite harmol or its analogue harmaline, suggesting that the onset of harmine-induced cytotoxicity may depend on the initial and/or residual concentrations of harmine rather than on those of its metabolites. 相似文献
10.
Yiping Zhu Kun Xiao Lanping Ma Bin Xiong Yan Fu Haiping Yu Wei Wang Xin Wang Dingyu Hu Hongli Peng Jingya Li Qi Gong Qian Chai Xican Tang Haiyan Zhang Jia Li Jingkang Shen 《Bioorganic & medicinal chemistry》2009,17(4):1600-1613
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients. 相似文献
11.
A series of new DNA-interactive C3-tethered 1,2,3-triazolo-β-carboline derivatives have been synthesized via ‘click’ reaction and evaluated for their in vitro cytotoxicity as well as DNA binding affinity. Interestingly, these hybrids have displayed potent in vitro cytotoxicity in comparison to Harmine against the HT-29 (colon cancer) and HGC-27 (gastric cancer) cell lines. The compounds 7f, 7k, 7n and 7s appear to be more effective against the HGC-27 cell line, among which compound 7f showed the highest cytotoxicity (5.44 ± 0.58, IC50 μM). The compounds 7e and 7f appear to be more active against the HT-29 cell line, among which compound 7f exhibited the highest cytotoxicity (3.67 ± 0.62, IC50 μM). To gain more insight into the DNA-binding ability, spectroscopic techniques such as UV–Visible, fluorescence and circular dichroism studies were performed. Viscosity measurements and molecular docking studies substantiate that these compounds indeed bind to DNA via the minor groove. 相似文献
12.
《Bioorganic & medicinal chemistry letters》2014,24(22):5279-5283
A series of metronidazole–thiazole derivatives has been designed, synthesized and evaluated as potential antibacterial inhibitors. All the synthesized compounds were determined by elemental analysis, 1H NMR and MS. They were also tested for antibacterial activity against Escherichia coli, Bacillus thuringiensis, Bacillus subtilis and Pseudomonas aeruginosa as well as for the inhibition to FabH. The results showed that compound 5e exhibited the most potent inhibitory activity against E. coli FabH with IC50 of 4.9 μM. Molecular modeling simulation studies were performed in order to predict the biological activity of proposed compounds. Toxicity assay of compounds 5a, 5b, 5d, 5e, 5g and 5i showed that they were noncytotoxic against human macrophage. The results revealed that these compounds offered remarkable viability. 相似文献
13.
《Bioorganic & medicinal chemistry letters》2014,24(19):4729-4734
The synthesis and bio-evaluation of naturally occurring boswellic acids (BAs) as an alternate CAP for the design of new HDAC inhibitors is described. All the compounds were screened against a panel of human cancer cell lines to identify leads, which were subsequently examined for their potential to inhibit HDACs. The identified lead compound showed IC50 value of 6 μm for HDACs, found to induce G1 cell cycle arrest at significantly low concentration (1 μM) and caused significant loss in mitochondrial membrane potential at 5 and 10 μM. Furthermore, specific interactions of the lead molecule inside the catalytic domain were also studied through in silico molecular modeling. 相似文献
14.
Qian W Lu W Sun H Li Z Zhu L Zhao R Zhang L Zhou S Zhou Y Jiang H Zhen X Liu H 《Bioorganic & medicinal chemistry》2012,20(15):4862-4871
A series of new tetrahydroprotoberberine (THPB) derivatives were designed, synthesized, and tested for their binding affinity towards dopamine (D(1) and D(2)) and serotonin (5-HT(1A) and 5-HT(2A)) receptors. Many of the THPB compounds exhibited high binding affinity and activity at the dopamine D(1) receptor, as well as high selectivity for the D(1) receptor over the D(2), 5-HT(1A), and 5-HT(2A) receptors. Among these, compound 19c exhibited a promising D(1) receptor binding affinity (K(i)=2.53nM) and remarkable selectivity versus D(2)R (inhibition=81.87%), 5-HT(1A)R (inhibition=61.70%), and 5-HT(2A)R (inhibition=24.96%). Compared with l-(S)-stepholidine (l-SPD) (D(1)K(i)=6.23nM, D(2)K(i)=56.17nM), compound 19c showed better binding affinity for the D(1) receptor (2.5-fold higher) and excellent D(2)/D(1) selectivity. Functional assays found compounds 18j, 18k, and 19c are pure D(1) receptor antagonists. These results indicate that removing the C10 hydroxy group and introducing a methoxy group at C11 of the pharmacophore of l-SPD can reverse the function of THPB compounds at the D(1) receptor. These results are in accord with molecular docking studies. 相似文献
15.
《Bioorganic & medicinal chemistry》2020,28(22):115721
Multitarget molecular hybrids of N-benzyl pyrrolidine derivatives were designed, synthesized, and biologically evaluated for the treatment of Alzheimer’s disease (AD). Among the synthesized compounds, 4k and 4o showed balanced enzyme inhibitions against cholinesterases (AChE and BChE) and BACE-1. Both leads showed considerable PAS-AChE binding capability, excellent brain permeation, potential disassembly of Aβ aggregates, and neuroprotective activity against Aβ-induced stress. Compounds 4k and 4o also ameliorated cognitive dysfunction against the scopolamine-induced amnesia model in the Y-maze test. The ex vivo study signified attenuated brain AChE activity and antioxidant potential of compounds 4k and 4o. Furthermore, compound 4o also showed improvement in Aβ-induced cognitive dysfunction by the Morris water maze test with excellent oral absorption characteristics ascertained by the pharmacokinetic study. In silico molecular docking and dynamics simulation studies of leads suggested their consensual binding affinity toward PAS-AChE in addition to aspartate dyad of BACE-1. 相似文献
16.
《Bioorganic & medicinal chemistry》2014,22(11):2955-2965
A series of novel tripeptidyl epoxyketone derivatives constructed from β-amino acid were designed, synthesized and evaluated as proteasome inhibitors. All target compounds were tested for their proteasome inhibitory activities and selected compounds were tested for their anti-proliferation activities against two multiple myeloma (MM) cell lines RPMI 8226 and NCI-H929. Among them, eleven compounds exhibited proteasome inhibitory rates of more than 50% at the concentration of 1 μg/mL and nine compounds showed anti-proliferation activities with IC50 values at low micromolar level. Compound 20h displayed the most potent proteasome inhibitory activities (IC50: 0.11 ± 0.01 μM) and anti-proliferation activities with IC50 values at 0.23 ± 0.01 and 0.17 ± 0.02 μM against two tested cell lines. Additionally, the poly-ubiquitin accumulation in the western blot analysis supported that proteasome inhibition in a cellular system was induced by compound 20h. All these experimental results confirmed that β-amino acid can be introduced as a building block for the development of proteasome inhibitors. 相似文献
17.
A series of chalcone Mannich base derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease based on the multi-target directed ligands design strategy. In vitro assays demonstrated that most of the derivatives exerted potent selective inhibitory potency on AChE with good multifunctional properties. Among them, representative compound 7c exhibited moderate inhibitory potency for EeAChE (IC50 = 0.44 μM) and MAO-B inhibition (IC50 = 1.21 μM), good inhibitory effect on self-induced Aβ1−42 aggregation (55.0%, at 25 μM), biometal chelating property, moderate antioxidant activity with a value 1.93-fold of Trolox. Moreover, both kinetic analysis of AChE inhibition and molecular modeling study revealed that 7c showed a mixed-type inhibition, binding simultaneously to CAS and PAS of AChE. In addition, 7c also displayed high BBB permeability. These properties indicated 7c may be a promising multifunctional agent for the treatment of AD. 相似文献
18.
Yi Le Yiyuan Gan Yihong Fu Jiamin Liu Wen Li Xue Zou 《Journal of enzyme inhibition and medicinal chemistry》2013,28(1):555-564
Abstract In this paper, a series of novel 3-methyl-quinazolinone derivatives was designed, synthesised and evaluated for antitumor activity in vitro on wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and three human cancer cell lines including A549, PC-3, and SMMC-7721. The results displayed that some of the compounds had good activities, especially 2-{4-[(3-Fluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?g), 2-{4-[(3,4-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5k) and 2-{4-[(3,5-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?l) showed high antitumor activities against three cancer cell lines. Moreover, compound 5k could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G2/M phase at tested concentrations. Also, compound 5k could inhibit the EGFRwt-TK with IC50 value of 10?nM. Molecular docking data indicates that the compound 5k may exert inhibitory activity by forming stable hydrogen bonds with the R817, T830 amino acid residues and cation-Π interaction with the K72 residue of EGFRwt-TK. 相似文献
19.
《Bioorganic & medicinal chemistry》2014,22(21):6089-6104
A series of tacrine-(β-carboline) hybrids (11a–q) were designed, synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer’s disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation, Cu2+-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, 11l presented the greatest ability to inhibit cholinesterase (IC50, 21.6 nM for eeAChE, 63.2 nM for hAChE and 39.8 nM for BuChE), good inhibition of Aβ aggregation (65.8% at 20 μM) and good antioxidant activity (1.57 trolox equivalents). Kinetic and molecular modeling studies indicated that 11l was a mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 11l could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). These results suggested that 11l might be an excellent multifunctional agent for AD treatment. 相似文献
20.
A new series of coumarin thiazole derivatives 7a-7t were synthesized, characterized by 1H NMR, 13C NMR and element analysis, evaluated for their α-glucosidase inhibitory activity. The majority of the screened compounds displayed potent inhibitory activities with IC50 values in the range of 6.24 ± 0.07–81.69 ± 0.39 μM, when compared to the standard acarbose (IC50 = 43.26 ± 0.19 μM). Structure–activity relationship (SAR) studies suggest that the pattern of substitution in the phenyl ring is closely related to the biological activity of this class of compounds. Among all the tested molecules, compound 7e (IC50 = 6.24 ± 0.07 μM) was found to be the most active compound in the library of coumarin thiazole derivatives. Enzyme kinetic studies showed that compound 7e is a non-competitive inhibitor with a Ki of 6.86 μM. Furthermore, the binding interactions of compound 7e with the active site of α-glucosidase were confirmed through molecular docking. This study has identified a new class of potent α-glucosidase inhibitors for further investigation. 相似文献