首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Estuaries of major rivers provide important stopover habitat for migratory birds throughout the world. These estuaries experience large amounts of freshwater inputs from spring runoff. Understanding how freshwater inputs affect food supply for migrating birds, and how birds respond to these changes will be essential for effective conservation of critical estuarine habitats. We estimated trends over time in counts of Western Sandpiper (Calidris mauri) and Pacific Dunlin (Calidris alpina pacifica) during northward migration on the Fraser River estuary, British Columbia, Canada, where shorebirds feed extensively on intertidal biofilm and invertebrates. We also examined whether counts were correlated with a suite of environmental variables related to local conditions (precipitation, temperature, wind speed and direction, solar radiation, tidal amplitude, and discharge rates from the Fraser River) during a total of 540 surveys from 1991 to 2019. Counts of Western Sandpiper declined ~54% (−2.0% per annum) over the entire study period, and 23% from 2009 to 2019 (−0.9% per annum). Counts of Pacific Dunlin did not show a statistically significant change over the study period. Counts of shorebirds were lower when discharge from the Fraser River was high, which we propose results from a complex interaction between the abrupt changes in salinity and the estuarine food web related to the quantity or quality of intertidal biofilm. Counts were also higher when tidal amplitude was lower (neap tides), potentially related to longer exposure times of the mudflats than during spring tides. Effects of wind are likely related to birds delaying departure from the stopover site during unfavorable wind conditions. The negative trend in migrating Western Sandpipers is consistent with declines in nonbreeding areas as observed in Christmas Bird Counts. Understanding causes of population change in migratory shorebirds highlights the need for research on mechanistic pathways in which freshwater inputs affect food resources at estuarine stopovers.  相似文献   

2.
Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2±4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity would need to be revised downward if Oligochaetes are truly avoided or unavailable for consumption.  相似文献   

3.
Identifying migration routes and fall stopover sites of Cinnamon Teal (Spatula cyanoptera septentrionalium) can provide a spatial guide to management and conservation efforts, and address vulnerabilities in wetland networks that support migratory waterbirds. Using high spatiotemporal resolution GPS‐GSM transmitters, we analyzed 61 fall migration tracks across western North America during our three‐year study (2017–2019). We marked Cinnamon Teal primarily during spring/summer in important breeding and molting regions across seven states (California, Oregon, Washington, Idaho, Utah, Colorado, and Nevada). We assessed fall migration routes and timing, detected 186 fall stopover sites, and identified specific North American ecoregions where sites were located. We classified underlying land cover for each stopover site and measured habitat selection for 12 land cover types within each ecoregion. Cinnamon Teal selected a variety of flooded habitats including natural, riparian, tidal, and managed wetlands; wet agriculture (including irrigation ditches, flooded fields, and stock ponds); wastewater sites; and golf and urban ponds. Wet agriculture was the most used habitat type (29.8% of stopover locations), and over 72% of stopover locations were on private land. Relatively scarce habitats such as wastewater ponds, tidal marsh, and golf and urban ponds were highly selected in specific ecoregions. In contrast, dry non‐habitat across all ecoregions, and dry agriculture in the Cold Deserts and Mediterranean California ecoregions, was consistently avoided. Resources used by Cinnamon Teal often reflected wetland availability across the west and emphasize their adaptability to dynamic resource conditions in arid landscapes. Our results provide much needed information on spatial and temporal resource use by Cinnamon Teal during migration and indicate important wetland habitats for migrating waterfowl in the western United States.  相似文献   

4.
While it is clear that many migratory behaviors are shared across taxa, generalizable models that predict the distribution and abundance of migrating taxa at the landscape scale are rare. In migratory landbirds, ephemeral concentrations of refueling birds indicate that individual behaviors sometimes produce large epiphenomena in particular geographic locations. Identifying landscape factors that predict the distribution and abundance of birds during migratory stopover will both improve our understanding of the migratory process and assist in broad, regionally relevant conservation. In this study we used autumnal passerine stopover data from a five‐year period and eleven stopover sites across coastal Maine, USA, to test four broad hypotheses of migrant distribution and abundance that have been supported in other regions: a) the community characteristics of the pool of potential migrants, b) a site's local geography, c) landscape composition and configuration measured at different spatial scales, and d) interactions between these factors. Our final model revealed that birds concentrate at ‘habitat islands’, sites that possess a disproportionate percentage of the vegetated habitat in the 4‐km surrounding landscape. The strength of this pattern, however, was inversely proportional to a species' remaining migratory distance. Our results corroborate several studies that emphasize the importance of land cover composition at finer spatial scales (< 80 km2) for predicting the stopover distribution and abundances of migratory birds. This suggests that different migrants likely assess stopover sites with similar mechanisms along their migratory route, and these commonalities may be broadly applied to identify stopover locations of conservation importance across the continent.  相似文献   

5.
Migrating songbirds interrupt their feeding to fly between stopover sites that may vary appreciably in diet quality. We studied the effects of fasting and food restriction on body composition and digestive organs in a migratory songbird and how these effects interacted with diet quality to influence the rate of recovery of nutrient reserves. Food limitation caused white-throated sparrows to reduce both lean and fat reserves, with about 20% of the decline in lean mass represented by a decline in stomach, small intestine, and liver. During refeeding on diets similar in nutrient composition to either grain or fruit, food-limited grain-fed birds ate 40% more than did control birds, and they regained body mass, with on average 60% of the increase in body mass composed of lean mass including digestive organs. In contrast, food-limited fruit-fed birds did not eat more than did control birds and did not regain body mass, suggesting that a digestive constraint limited their food intake. The interacting effects of food limitation and diet quality on the dynamics of body composition and digestive organs in sparrows suggest that the adequacy of the diet at stopover sites can directly influence the rate of recovery of body reserves in migrating songbirds and hence the pace of their migration.  相似文献   

6.
In studies of habitat suitability at landscape scales, transferability of species-landscape associations among sites are likely to be critical because it is often impractical to collect datasets across various regions. However, limiting factors, such as prey availability, are not likely to be constant across scales because of the differences in species pools. This is particularly true for top predators that are often the target for conservation concern. Here we focus on gray-faced buzzards, apex predators of farmland-dominated landscapes in East Asia. We investigated context dependency of “buzzard-landscape relationship”, using nest location datasets from five sites, each differing in landscape composition. Based on the similarities of prey items and landscape compositions across the sites, we determined several alternative ways of grouping the sites, and then examined whether buzzard-landscape relationship change among groups, which was conducted separately for each way of grouping. As a result, the model of study-sites grouping based on similarities in prey items showed the smallest ΔAICc. Because the terms of interaction between group IDs and areas of broad-leaved forests and grasslands were selected, buzzard-landscape relationship showed a context dependency, i.e., these two landscape elements strengthen the relationship in southern region. The difference in prey fauna, which is associated with the difference in climate, might generate regional differences in the buzzard-landscape associations.  相似文献   

7.
Habitat conditions and nutrient reserve levels during spring migration have been suggested as important factors affecting population declines in waterfowl, emphasizing the need to identify key sites used during spring and understand habitat features and resource availability at stopover sites. We used satellite telemetry to identify stopover sites used by surf scoters migrating through southeast Alaska during spring. We then contrasted habitat features of these sites to those of random sites to determine habitat attributes corresponding to use by migrating scoters. We identified 14 stopover sites based on use by satellite tagged surf scoters from several wintering sites. We identified Lynn Canal as a particularly important stopover site for surf scoters originating throughout the Pacific winter range; approximately half of tagged coastally migrating surf scoters used this site, many for extended periods. Stopover sites were farther from the mainland coast and closer to herring spawn sites than random sites, whereas physical shoreline habitat attributes were generally poor predictors of site use. The geography and resource availability within southeast Alaska provides unique and potentially critical stopover habitat for spring migrating surf scoters. Our work identifies specific sites and habitat resources that deserve conservation and management consideration. Aggregations of birds are vulnerable to human activity impacts such as contaminant spills and resource management decisions. This information is of value to agencies and organizations responsible for emergency response planning, herring fisheries management, and bird and ecosystem conservation. © 2010 The Wildlife Society  相似文献   

8.
A population decline of the western Atlantic red knot (Calidris canutus rufa) has been linked to food limitation during the spring migratory stopover in Delaware Bay, USA. The stopover ecology at potential alternative sites has received little attention. We studied factors affecting red knot habitat selection and flock size at a coastal stopover site in Virginia in 2006–2007. The most common potential prey items were coquina clams (Donax variabilis) and crustaceans. Red knot foraging sites had more clams and crustaceans than unused sites in 2006. Prey abundance increased during the 2007 stopover period and remained high after the red knot peak. Red knot flock size in 2007 increased with mean clam shell length, and probability of flock presence decreased with increasing distance from night use locations. Our results suggest that red knots preferred coquina clams and that these clams were not depleted during the stopover period in 2007. Thus prey abundance did not appear to be a population-limiting factor at this coastal stopover site in Virginia in that year. Protection of coastal sites outside of Delaware Bay, many of which have been altered by human development, would likely benefit red knot population recovery, as they can apparently provide abundant food resources during at least some years.  相似文献   

9.
1. Neotropical migrant birds show a clear preference for stopover habitats with ample food supplies; yet, the proximate cues underlying these decisions remain unclear. 2. For insectivorous migrants, cues associated with vegetative phenology (e.g. flowering, leaf flush, and leaf loss) may reliably predict the availability of herbivorous arthropods. Here we examined whether migrants use the phenology of five tree species to choose stopover locations, and whether phenology accurately predicts food availability. 3. Using a combination of experimental and observational evidence, we show migrant populations closely track tree phenology, particularly the flowering phenology of honey mesquite (Prosopis glandulosa), and preferentially forage in trees with more flowers. Furthermore, the flowering phenology of honey mesquite reliably predicts overall arthropod abundance as well as the arthropods preferred by migrants for food. 4. Together, these results suggest that honey mesquite flowering phenology is an important cue used by migrants to assess food availability quickly and reliably, while in transit during spring migration.  相似文献   

10.
  1. Dietary studies in birds of prey involve direct observation and examination of food remains at resting and nesting sites. Although these methods accurately identify diet in raptors, they are time‐consuming, resource‐intensive, and associated with biases from the feeding ecology of raptors like Gyps vultures. Our study set out to estimate diet composition in Gyps vultures informed by stable isotopes that provide a good representation of assimilated diet from local systems.
  2. We hypothesized that differences in Gyps vulture diet composition is a function of sampling location and that these vultures move between Serengeti National Park and Selous Game Reserve to forage. We also theorized that grazing ungulates are the principal items in Gyps vulture diet.
  3. Through combined linear and Bayesian modeling, diet derived from δ13C in Gyps vultures consisted of grazing herbivores across sites, with those in Serengeti National Park consuming higher proportions of grazing herbivores (>87%). δ13C differences in vulture feather subsets did not indicate shifts in vulture diet and combined with blood δ13C, vultures fed largely on grazers for ~159 days before they were sampled. Similarly, δ15N values indicated Gyps vultures fed largely on herbivores. δ34S ratios separated where vultures fed when the two sites were compared. δ34S variation in vultures across sites resulted from baseline differences in plant δ34S values, though it is not possible to match δ34S to specific locations.
  4. Our findings highlight the relevance of repeated sampling that considers tissues with varying isotopic turnover and emerging Bayesian techniques for dietary studies using stable isotopes. Findings also suggested limited vulture movement between the two local systems. However, more sampling coupled with environmental data is required to fully comprehend this observation and its implications to Gyps vulture ecology and conservation.
  相似文献   

11.
A widespread phenomenon in migrant birds is that they travel faster in spring than in autumn. During migration birds spend most time at stopover sites and, correspondingly, the faster spring migration is mainly explained by shorter stopovers in spring than autumn. Because a main purpose of stopovers is to replenish the fuel used in flight, a higher rate of fuel deposition (FDR) in spring is thought to explain the shorter stopovers and hence shorter total duration of migration in spring. Critical migratory processes, including the onset and extent of pre‐migratory fueling, are endogenously regulated. It is therefore not unlikely that refueling at stopover sites is, at least partly, also under endogenous control. We here tested whether there is an endogenous seasonal difference in food intake and FDR, which could contribute to shorter stopovers and hence faster migration in spring. We measured daily food intake and daily FDR in two subspecies of the northern wheatear Oenanthe oenanthe, temporarily confined at stopover under identical constant indoor conditions in spring and autumn. The two wheatear subspecies differed markedly in absolute food intake and FDR. Within subspecies, however, food intake and FDR did not differ between spring and autumn, indicating that faster spring migration in northern wheatears is not explained by an endogenously controlled seasonal difference in birds’ motivation to refuel. To further substantiate this claim, similar measurements should be taken at other locations along northern wheatears’ migration routes. Comparable experiments in other species could test the generality of our results.  相似文献   

12.
It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993–2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy’s Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken’s distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as static points, but rather as sites that shift around the landscape in response to shifting vegetation structure. Acknowledging shifting lek locations in these landscapes will help ensure conservation efforts are successful by targeting the appropriate areas for protection and management.  相似文献   

13.
There are not “universal methods” to determine diet composition of predators. Most traditional methods are biased because of their reliance on differential digestibility and the recovery of hard items. By relying on assimilated food, stable isotope and Bayesian mixing models (SIMMs) resolve many biases of traditional methods. SIMMs can incorporate prior information (i.e. proportional diet composition) that may improve the precision in the estimated dietary composition. However few studies have assessed the performance of traditional methods and SIMMs with and without informative priors to study the predators’ diets. Here we compare the diet compositions of the South American fur seal and sea lions obtained by scats analysis and by SIMMs-UP (uninformative priors) and assess whether informative priors (SIMMs-IP) from the scat analysis improved the estimated diet composition compared to SIMMs-UP. According to the SIMM-UP, while pelagic species dominated the fur seal’s diet the sea lion’s did not have a clear dominance of any prey. In contrast, SIMM-IP’s diets compositions were dominated by the same preys as in scat analyses. When prior information influenced SIMMs’ estimates, incorporating informative priors improved the precision in the estimated diet composition at the risk of inducing biases in the estimates. If preys isotopic data allow discriminating preys’ contributions to diets, informative priors should lead to more precise but unbiased estimated diet composition. Just as estimates of diet composition obtained from traditional methods are critically interpreted because of their biases, care must be exercised when interpreting diet composition obtained by SIMMs-IP. The best approach to obtain a near-complete view of predators’ diet composition should involve the simultaneous consideration of different sources of partial evidence (traditional methods, SIMM-UP and SIMM-IP) in the light of natural history of the predator species so as to reliably ascertain and weight the information yielded by each method.  相似文献   

14.
The locations of visual objects to which we attend are initially mapped in a retinotopic frame of reference. Because each saccade results in a shift of images on the retina, however, the retinotopic mapping of spatial attention must be updated around the time of each eye movement. Mathôt and Theeuwes [1] recently demonstrated that a visual cue draws attention not only to the cue''s current retinotopic location, but also to a location shifted in the direction of the saccade, the “future-field”. Here we asked whether retinotopic and future-field locations have special status, or whether cue-related attention benefits exist between these locations. We measured responses to targets that appeared either at the retinotopic or future-field location of a brief, non-predictive visual cue, or at various intermediate locations between them. Attentional cues facilitated performance at both the retinotopic and future-field locations for cued relative to uncued targets, as expected. Critically, this cueing effect also occurred at intermediate locations. Our results, and those reported previously [1], imply a systematic bias of attention in the direction of the saccade, independent of any predictive remapping of attention that compensates for retinal displacements of objects across saccades [2].  相似文献   

15.
As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1) marine protected areas (MPAs) were established, (2) neither MPAs nor blast fishing was present (hence “unprotected”), and (3) blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.  相似文献   

16.
Migratory shorebirds have many unique life history characteristics, such as long‐distance travel between breeding sites, stopover sites, and wintering sites. The physiological challenges for migrant energy requirement and immunity may affect their gut microbiome community. Here, we reviewed the specific features (e.g., relatively high proportion of Corynebacterium and Fusobacterium) in the gut microbiome of 18 migratory shorebirds, and the factors (e.g., diet, migration, environment, and phylogeny) affecting the gut microbiome. We discussed possible future studies of the gut microbiome in migratory shorebirds, including the composition and function of the spatial‐temporal gut microbiome, and the potential contributions made by the gut microbiome to energy requirement during migration.  相似文献   

17.
The Biogents® Sentinel (BGS) trap is the standard tool to monitor adult Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae), the Asian tiger mosquito. BGS traps are commonly placed in residential properties during surveillance operations, but locations within properties may have significant differences in ambient light, temperature, and humidity (e.g. between a sunlit lawn and shady underbrush). We examined the effect of BGS trap placement on Ae. albopictus capture rates in three residential properties in Monmouth County, New Jersey, USA. In each property we visually selected locations as shade, partial shade, and sun. Traps in “partial shade” locations were under vegetation and were exposed to filtered sunlight during some parts of the day while “shaded” locations were never exposed to direct sunlight. Locations defined as “sun” were exposed to direct sunlight for large parts of the day. We placed a BGS trap in each of the three location types and used small data loggers to measure temperature, relative humidity, and light exposure at each trap during a 24-hour deployment. To address temporal variability, we made seven separate measurements from 31 August to 22 September 2010. We found that “partial shade” and “full shade” locations did not differ but that “full sun” locations had significantly higher light exposure, higher temperature, and lower humidity. Importantly, Ae. albopictus catches (males, females, or both) were consistently and significantly over 3 times higher in traps located in shaded locations. To further investigate the effects of local temperature and humidity on surveillance we examined Ae. albopictus collections from 37 BGS traps fitted with data loggers and deployed weekly from August through mid October, during the 2009 season, in three urban sites in Mercer County, NJ. We confirmed that local climate influences capture rates and that Ae. albopictus surveillance projects need to monitor trap placement carefully for maximum efficiency.  相似文献   

18.
In migrating birds, the success of migration is determined by stopover duration, the most important factor determining overall speed of migration, and fuel deposition rate. However, very little is known about stopover durations of small migrant birds, because appropriate methods for data analysis were lacking until recently. We used a new capture-recapture analysis to estimate stopover durations of 1st-year reed warblers Acrocephalus scirpaceus, sedge warblers A. schoenobaenus and garden warblers Sylvia borin at 17 stopover sites in Europe and Africa during autumn. Average stopover duration of non-moulting reed warblers was 9.5 days while moulting conspecifics stayed about twice as long. Average stopover duration of sedge warblers was 9.1 days and, in contrast to the other two species, differed between years at several sites. Garden warblers stayed 7.7 days on average. The long stopover duration of the reed warbler, resulting in slow overall migration speed, is related to its low fuel deposition rate. It can be explained by low, but predictable, food resources and an early departure during moult. Compared to the reed warbler, the stopover duration of the sedge warbler varies more between sites and probably also between years, as the supply of its preferred diet (reed aphids) is spatially and temporally unpredictable but can be superabundant. The short stopover duration of the garden warbler, leading to high overall migration speed, can be related to high fuel deposition rates, probably brought about by a change to an abundant, predictable and long-lasting fruit diet. Within species, stopover duration did not change significantly along the migration route. Hence, an increase of migration speed along the migration route, as suggested in the literature, may be caused by longer flight bouts in the south. However, it remains largely unknown which environmental and possibly endogenous factors regulate stopover duration.  相似文献   

19.
For consumers today, the perceived ethicality of a food’s production method can be as important a purchasing consideration as its price. Still, few studies have examined how, neurofunctionally, consumers are making ethical, food-related decisions. We examined how consumers’ ethical concern about a food’s production method may relate to how, neurofunctionally, they make decisions whether to purchase that food. Forty-six participants completed a measure of the extent to which they took ethical concern into consideration when making food-related decisions. They then underwent a series of functional magnetic resonance imaging (fMRI) scans while performing a food-related decision-making (FRDM) task. During this task, they made 56 decisions whether to purchase a food based on either its price (i.e., high or low, the “price condition”) or production method (i.e., with or without the use of cages, the “production method condition”), but not both. For 23 randomly selected participants, we performed an exploratory, whole-brain correlation between ethical concern and differential neurofunctional activity in the price and production method conditions. Ethical concern correlated negatively and significantly with differential neurofunctional activity in the left dorsolateral prefrontal cortex (dlPFC). For the remaining 23 participants, we performed a confirmatory, region-of-interest (ROI) correlation between the same variables, using an 8-mm3 volume situated in the left dlPFC. Again, the variables correlated negatively and significantly. This suggests, when making ethical, food-related decisions, the more consumers take ethical concern into consideration, the less they may rely on neurofunctional activity in the left dlPFC, possibly because making these decisions is more routine for them, and therefore a more perfunctory process requiring fewer cognitive resources.  相似文献   

20.
Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of quantifying degraded states and provides a series of hypotheses for future experimental restoration work. More broadly, our work provides a framework for developing and evaluating reference models that incorporate multiple, interactive anthropogenic drivers of ecosystem degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号