首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is a need for new safe, effective and short-course treatments for leishmaniasis; one strategy is to use combination chemotherapy. Polymer–drug conjugates have shown promise for the delivery of anti-leishmanial agents such as amphotericin B. In this paper, we report on the preparation and biological evaluation of polymer–drug conjugates of N-(2-hydroxypropyl)methacrylamide (HPMA), amphotericin B and alendronic acid. The combinatorial polymer–drug conjugates were effective anti-leishmanial agents in vitro and in vivo, but offered no advantage over the single poly(HPMA)–amphotericin B conjugates.  相似文献   

2.
3.
《Molecular medicine today》1998,4(11):478-484
Heat shock proteins (Hsps), ubiquitous in nature, act as chaperones for peptides and other proteins. They have been implicated in loading immunogenic peptides onto major histocompatibility complex molecules for presentation to T cells. When isolated from tumor cells, Hsps are complexed with a wide array of peptides, some of which serve as tumor-specific antigens. Animal studies have demonstrated that heat shock protein–peptide complexes (HSPPCs) from tumor cells can act as vaccines to prevent or treat tumors. Potent and specific tumor antigens have long been the holy grail in cancer immunotherapy; HSPPCs from tumor cells could become a safe and reliable source of tumor-specific antigens for clinical application.  相似文献   

4.
During the last decades, numerous studies have focused on combining the unique catalytic/functional properties and structural characteristics of proteins and enzymes with those of synthetic molecules and macromolecules. The aim of such multidisciplinary studies is to improve the properties of the natural component, combine them with those of the synthetic, and create novel biomaterials in the nanometer scale. The specific coupling of polymers onto the protein structures has proved to be one of the most straightforward and applicable approaches in that sense. In this article, we focus on the synthetic pathways that have or can be utilized to specifically couple proteins to polymers. The different categories of well-defined protein–polymer conjugates and the effect of the polymer on the protein function are discussed. Studies have shown that the specific conjugation of a synthetic polymer to a protein conveys its physico-chemical properties and, therefore, modifies the biodistribution and solubility of the protein, making it in certain cases soluble and active in organic solvents. An overview of the applications derived from such bioconjugates in the pharmaceutical industry, biocatalysis, and supramolecular nanobiotechnology is presented at the final part of the article.  相似文献   

5.
To enhance the potential therapeutic efficacy of an antimicrobial peptide human β-defensin 3, two fusion peptides, a bactericidal–immunomodulatory fusion peptide human β-defensin 3-mannose-binding lectin and a bactericidal–bactericidal fusion peptide human β-defensin 3-lysozyme were synthesized and the bactericidal activities in vitro and in vivo against methicillin-resistant Staphylococcus aureus N315 were demonstrated in this study. Peptide human β-defensin 3-lysozyme showed the best bactericidal activity in vitro, but human β-defensin 3-mannose-binding lectin showed a significant improvement in angiogenesis and tissue reconstruction. Our results illustrated that outstanding bactericidal activity in vitro is not essential in the development of antimicrobial peptides. Fusion strategy and immunomodulatory factors should be utilized in novel antimicrobial peptide development.  相似文献   

6.
Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics.  相似文献   

7.
Identifying novel chemopreventive and chemotherapeutic agents and targeting them to patients at high risk of developing cancer or following curative treatment may go some way towards improving prognosis. This review examines current knowledge regarding the chemopreventive and chemotherapeutic potential of phytochemicals in cancer. Both in vitro and animal studies demonstrate that several phytochemicals increase the activity of intracellular transglutaminases, a family of enzymes involved in cell differentiation, through the covalent conjugation of polyamine to cellular protein, with promising anti-neoplastic properties. The substantial data available on certain plant secondary metabolites makes a strong case for integrating these safe and well-tolerated agents into clinical practice.  相似文献   

8.
A facile synthetic method for peptide–porphyrin conjugates containing four peptide units on one porphyrin was developed using chemoselective reactions. The key building blocks, 5,10,15,20-tetrakis(3-azidophenyl)porphyrin 1 and 5,10,15,20-tetrakis(5-azido-3-pyridyl)porphyrin 2, were efficiently synthesized and used as substrates for two well-known chemoselective reactions, traceless Staudinger ligation and copper-catalyzed azide alkyne cycloaddition (so-called click chemistry). Both reactions gave the desired compounds, and click chemistry was superior for our purpose. To confirm the value of the established methodology, nine peptide–porphyrin conjugates were synthesized, and their catalase- and peroxidase-like activity in water was evaluated. Our synthetic strategy is expected to be valuable for the preparation of artificial heme protein models.  相似文献   

9.
10.
Kojic acid (KA), a well known tyrosinase inhibitor, has insufficient inhibitory activity and stability. We modified KA with amino acids and screened their tyrosinase inhibitory activity. Among them, kojic acid–phenylalanine amide (KA-F-NH2) showed the strongest inhibitory activity, which was maintained for over 3 months at 50 °C, and acted as a noncompetitive inhibitor as determined by kinetic analysis. It also exhibited dopachrome reducing activity. We also propose a new tyrosinase inhibition mechanism based on the docking simulation data.  相似文献   

11.
Five RGD peptide–camptothecin (CPT) conjugates were designed and synthesized with the purpose to improve the therapeutic index of this antitumoral drug family. New RGD cyclopeptides were selected on the basis of their high affinity to αv integrin receptors overexpressed by tumor cells and their metabolic stability. The conjugates can be divided in two groups: in the first the peptide was attached to the drug through an amide bond, in the second through a hydrazone bond. The main difference between the two spacers lies in their acid stability. Affinity to the receptors was maintained for all conjugates and their internalization into tumor cells was demonstrated. The first group conjugates showed lower in vitro and in vivo activity than the parent drug, probably due to the excessive stability of the amide bond, even inside the tumor cells. Conversely, the hydrazone conjugates exhibited in vitro tumor cell inhibition similar to the parent drug, indicating high conversion in the culture medium and/or inside the cells, but their poor solubility hampered in vivo experiments. On the basis of these results, information was acquired for additional development of derivatives with different linkers and better solubility for in vivo evaluation.  相似文献   

12.
13.
Attempts to generate robust anti-tumour cytotoxic T lymphocyte (CTL) responses using immunotherapy are frequently thwarted by exhaustion and anergy of CTL recruited to tumour. One strategy to overcome this is to retarget a population of virus-specific CTL to kill tumour cells. Here, we describe a proof-of-principle study using a bispecific conjugate designed to retarget ovalbumin (OVA)-specific CTL to kill tumour cells via CD20. A single-chain trimer (SCT) consisting of MHCI H-2Kb/SIINFEKL peptide/beta 2 microglobulin/BirA was expressed in bacteria, refolded and chemically conjugated to one (1:1; F2) or two (2:1; F3) anti-hCD20 Fab′ fragments. In vitro, the [SCT × Fab′] (F2 and F3) redirected SIINFEKL-specific OT-I CTL to kill CD20+ target cells, and in the presence of CD20+ target cells to provide crosslinking, they were also able to induce proliferation of OT-I cells. In vivo, activated OT-I CTL could be retargeted to kill [SCT × Fab′]-coated B cells from hCD20 transgenic (hCD20 Tg) mice and also EL4 and B16 mouse tumour cells expressing human CD20 (hCD20). Importantly, in a hCD20 Tg mouse model, [SCT × Fab′] administered systemically were able to retarget activated OT-I cells to deplete normal B cells, and their performance matched that of a bispecific antibody (BsAb) comprising anti-CD3 and anti-CD20. [SCT × Fab′] were also active therapeutically in an EL4 tumour model. Furthermore, measurement of serum cytokine levels suggests that [SCT × Fab′] are associated with a lower level of inflammatory cytokine release than the BsAb and so may be advantageous clinically in terms of reduced toxicity.  相似文献   

14.
15.
Triterpene sapogenins are a group of biologically active compounds with antibacterial activity. However, the limited solubility and poor bioavailability of triterpene sapogenins restrict their therapeutic application. Polyarginine peptides are small cationic peptides with high affinities for multiple negatively charged cell membranes and possess moderate antibacterial activities. In this study, we designed and synthesized a series of sapogenin–polyarginine conjugates in which the triterpene sapogenin moiety was covalently appended to the positively charged polyarginine via click chemistry. A clear synergistic effect was found, and the conjugates exhibited potent and selective antibacterial activity against Gram-positive strains. Among them, BAc-R3 was the most promising compound, which was also proven to be nontoxic toward mammalian cells as well as stable in plasma. The mechanism of BAc-R3 primarily involves an interaction with the bacterial membrane, similar to that of antimicrobial peptides (AMPs). This scaffold design opens an avenue for the further development of novel antibiotics comprised of the combination of a peptide and a natural product.  相似文献   

16.
Bioprocess and Biosystems Engineering - In this study, alcalase (protease from Bacillus licheniformis) immobilization by adsorption, enzyme crosslinking and covalent enzyme binding to activated...  相似文献   

17.
This study utilizes the comprehensive traditional Chinese medicine database TCM Database@Taiwan ( http://tcm.cmu.edu.tw/ ) in conjunction with structure-based and ligand-based drug design to identify multi-function Src inhibitors. The three potential TCM candidates identified as having suitable docking conformations and bioactivity profiles were Angeliferulate, (3R)-2'-hydroxy-3',4'-dimethoxyisoflavan-7-O-beta-D-glucoside (HMID), and 3-[2',6-dihydroxy-5'-(2-propenyl)[1,1'-biphenyl]3-yl]-(E)-2-propenoic acid (3PA). Molecular dynamics simulation demonstrated that the TCM candidates have more stable interactions with the cleft and in complex with Src kinase compared to Saracatinib. Angeliferulate and HMID, both originated from Angelica sinensis, not only interact with Lys298 and amino acids from different loops in the cleft, but also with Asp407 located on the activation loop. These interactions are important to reduce the opening of the activation loop due to phosphorylation, hence stabilize the Src kinase cleft structure and inhibit activation. The TCM candidates also exhibited high affinity to other cancer-related target proteins (EGFR, HER2, and HSP90). Our observations suggest that the TCM candidates might have multi-targeting effects in hypertension and cancer.  相似文献   

18.

Background

The p38α MAP kinase pathway is involved in inflammation, cell differentiation, growth, apoptosis and production of pro-inflammatory cytokines TNF-α and IL-1β. The overproduction of these cytokines plays an important role in cancer. The aim of this work was to design a peptide inhibitor on the basis of structural information of the active site of p38α.

Methods

A tetrapeptide, VWCS as p38α inhibitor was designed on the basis of structural information of the ATP binding site by molecular modeling. The inhibition study of peptide with p38α was performed by ELISA, binding study by Surface Plasmon Resonance and anti-proliferative assays by MTT and flow cytometry.

Results

The percentage inhibition of designed VWCS against pure p38α protein and serum of HNSCC patients was 70.30 and 71.5%, respectively. The biochemical assay demonstrated the KD and IC50 of the selective peptide as 7.22 × 10− 9 M and 20.08 nM, respectively. The VWCS as inhibitor significantly reduced viability of oral cancer KB cell line with an IC50 value of 10 μM and induced apoptosis by activating Caspase 3 and 7.

Conclusions

VWCS efficiently interacted at the ATP binding pocket of p38α with high potency and can be used as a potent inhibitor in case of HNSCC.

General significance

VWCS can act as an anticancer agent as it potentially inhibits the cell growth and induces apoptosis in oral cancer cell-line in a dose as well as time dependent manner. Hence, p38α MAP kinase inhibitor can be a potential therapeutic agent for human oral cancer.  相似文献   

19.
Cyclodextrin (CD) is a well known drug carrier and excipient for enhancing aqueous solubility. CDs themselves are anticipated to have low membrane permeability because of relatively high hydrophilicity and molecular weight. CD derivatization with 17-beta estradiol (E2) was explored extensively using a number of different click chemistries and the cell membrane permeability of synthetic CD–E2 conjugate was explored by cell reporter assays and confocal fluorescence microscopy. In simile with reported dendrimer–E2 conjugates, CD–E2 was found to be a stable, extranuclear receptor selective estrogen that penetrated into the cytoplasm.  相似文献   

20.
Impressed by the exceptional antibacterial activity exhibited by our earlier designed molecules originating from 1,3,5-triazine, the present study was undertaken to synthesize a novel series of 1,3,5-triazine–pyrazole conjugates to bring diversity around the core skeleton. The target analogues showed potent antibacterial activity against tested Gram-positive and Gram-negative microorganisms. The toxicity and metabolic site prediction studies were also held out to set an effective lead candidate for the future antibacterial drug discovery initiatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号