首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dividing neuroendocrine cells differentiate into a neuronal-like phenotype in response to ligands activating G protein-coupled receptors, leading to the elevation of the second messenger cAMP. Growth factors that act at receptor tyrosine kinases, such as nerve growth factor, also cause differentiation. We report here that two aspects of cAMP-induced differentiation, neurite extension and growth arrest, are dissociable at the level of the sensors conveying the cAMP signal in PC12 and NS-1 cells. Following cAMP elevation, neuritogenic cyclic AMP sensor/Rapgef2 is activated for signaling to ERK to mediate neuritogenesis, whereas Epac2 is activated for signaling to the MAP kinase p38 to mediate growth arrest. Neither action of cAMP requires transactivation of TrkA, the receptor for NGF. In fact, the differentiating effects of NGF do not require activation of any of the cAMP sensors protein kinase A, Epac, or neuritogenic cyclic AMP sensor/Rapgef2 but, rather, depend on ERK and p38 activation via completely independent signaling pathways. Hence, cAMP- and NGF-dependent signaling for differentiation are also completely insulated from each other. Cyclic AMP and NGF also protect NS-1 cells from serum withdrawal-induced cell death, again by two wholly separate signaling mechanisms, PKA-dependent for cAMP and PKA-independent for NGF.  相似文献   

2.
Fluorescence resonance energy transfer (FRET) between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.  相似文献   

3.
Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling molecules such as cyclic AMP (cAMP) and Ca2+. Genetically encoded sensors for cGMP have been developed based on fluorescence resonance energy transfer (FRET) between fluorescent proteins. However, to analyze the dynamic relationship among these second messengers, combined use of existing sensors in a single cell is inadequate because of the significant spectral overlaps. A single wavelength indicator is an effective alternative to avoid this problem, but color variants of a single fluorescent protein-based biosensor are limited. In this study, to construct a new color fluorescent sensor, we converted the FRET-based sensor into a single wavelength indicator using a dark FRET acceptor. We developed a blue fluorescent cGMP biosensor, which is spectrally compatible with a FRET-based cAMP sensor using cyan and yellow fluorescent proteins (CFP/YFP). We cotransfected them and loaded a red fluorescent probe for Ca2+ into cells, and accomplished triple-parameter fluorescence imaging of these cyclic nucleotides and Ca2+, confirming the applicability of this combination to individually monitor their dynamics in a single cell. This blue fluorescent sensor and the approach using this FRET pair would be useful for multiparameter fluorescence imaging to understand complex signal transduction networks.  相似文献   

4.
5.
Here, we cloned a new family of four adenylyl cyclase (AC) splice variants from interleukin-1β (IL-1β)-transdifferentiated vascular smooth muscle cells (VSMCs) encoding short forms of AC8 that we have named “AC8E-H”. Using biosensor imaging and biochemical approaches, we showed that AC8E-H isoforms have no cyclase activity and act as dominant-negative regulators by forming heterodimers with other full-length ACs, impeding the traffic of functional units towards the plasma membrane. The existence of these dominant-negative isoforms may account for an unsuspected additional degree of cAMP signaling regulation. It also reconciles the induction of an AC in transdifferentiated VSMCs with the vasoprotective influence of cAMP. The generation of alternative splice variants of ACs may constitute a generalized strategy of adaptation to the cell's environment whose scope had so far been ignored in physiological and/or pathological contexts.  相似文献   

6.
The advent of social media expands our ability to transmit information and connect with others instantly, which enables us to behave as “social sensors.” Here, we studied concurrent bursty behavior of Twitter users during major sporting events to determine their function as social sensors. We show that the degree of concurrent bursts in tweets (posts) and retweets (re-posts) works as a strong indicator of winning or losing a game. More specifically, our simple tweet analysis of Japanese professional baseball games in 2013 revealed that social sensors can immediately react to positive and negative events through bursts of tweets, but that positive events are more likely to induce a subsequent burst of retweets. We confirm that these findings also hold true for tweets related to Major League Baseball games in 2015. Furthermore, we demonstrate active interactions among social sensors by constructing retweet networks during a baseball game. The resulting networks commonly exhibited user clusters depending on the baseball team, with a scale-free connectedness that is indicative of a substantial difference in user popularity as an information source. While previous studies have mainly focused on bursts of tweets as a simple indicator of a real-world event, the temporal correlation between tweets and retweets implies unique aspects of social sensors, offering new insights into human behavior in a highly connected world.  相似文献   

7.
8.
Transition metals are essential enzyme cofactors that are required for a wide range of cellular processes. Paradoxically, whereas metal ions are essential for numerous cellular processes, they are also toxic. Therefore cells must tightly regulate metal accumulation, transport, distribution, and export. Improved tools to interrogate metal ion availability and spatial distribution within living cells would greatly advance our understanding of cellular metal homeostasis. In this work, we present genetically encoded sensors for Zn2+ based on the principle of fluorescence resonance energy transfer. We also develop methodology to calibrate the probes within the cellular environment. To identify both sources of and sinks for Zn2+, these sensors are genetically targeted to specific locations within the cell, including cytosol, plasma membrane, and mitochondria. Localized probes reveal that mitochondria contain an elevated pool of Zn2+ under resting conditions that can be released into the cytosol upon glutamate stimulation of hippocampal neurons. We also observed that Zn2+ is taken up into mitochondria following glutamate/Zn2+ treatment and that there is heterogeneity in both the magnitude and kinetics of the response. Our results suggest that mitochondria serve as a source of and a sink for Zn2+ signals under different cellular conditions.Although mammalian cells are known to concentrate transition metals, it is now well established that under resting conditions, “free” (e.g. unbound) metals are maintained at extremely low levels. Estimates of the total Zn2+ concentration in mammalian cells typically range from 100 to 500 μm (1); yet free Zn2+ concentrations are tightly buffered by proteins such as metallothionein to maintain cytosolic Zn2+ concentrations in the picomolar to nanomolar range (25). However, there is emerging evidence that this static picture is dramatically altered by different cellular conditions, such as redox perturbations caused by oxidative stress (6, 7) and cellular signals such as nitric oxide (8). Consequently, there is a pool of labile Zn2+ that, if mobilized by cellular signals, would result in the generation of transient Zn2+ signals. Recent studies suggest that these Zn2+ signals influence critical biological processes, such as mitochondrial function (7, 9, 10). Elucidation of the sources and dynamics of these Zn2+ signals would greatly advance our understanding of the interplay between metal regulation and cellular function.There has been a huge effort in the past few years to develop sensitive and selective fluorescent probes to monitor Zn2+ in biological systems. The majority of this work has focused on the generation of small molecule fluorescent indicators (reviewed by Que et al. (11)). Yet there are also examples of sensors based partially on Zn2+-binding proteins, such as carbonic anhydrase (12) and metallothionein (13), and peptide scaffolds (14). Although many of these sensors have begun to provide insight into Zn2+ concentrations within cells, one limitation is that it is challenging to explicitly target them to subdomains within the cell. Localized probes are necessary to generate a complete picture of cellular Zn2+ homeostasis in mammalian cells. For this reason, sensors that are genetically encoded (i.e. generated by translation of a nucleic acid sequence) are attractive platforms for engineering metal-specific sensors. Encoded sensors provide additional benefits such as retention of the sensor over days to weeks permitting long term imaging and the ability to systematically vary the sensor concentration to evaluate the extent to which the sensor perturbs resting Zn2+ concentrations.Here we present genetically encoded sensors designed with a “Zn2+-sensing domain” sandwiched between two fluorescent proteins. The fluorescent proteins are chosen so that they are capable of undergoing fluorescence resonance energy transfer (FRET).2 Because the mechanism of FRET involves dipole-dipole coupling, it is exquisitely dependent on the distance and orientation of the fluorophores with respect to one another. Therefore, if the binding of Zn2+ induces a conformational change in the sensor, it will alter the energy transfer between the two fluorescent proteins. The advantage of using FRET as the optical readout is that the donor emission will decrease and the acceptor emission will increase upon Zn2+ binding. Hence, by taking the ratio of the acceptor to the donor emission, we can create a ratiometric sensor. These sensors are targeted to the cytosol, mitochondria, and plasma membrane by attachment of signal sequences and fusion to other proteins. These sensors reveal differences in the spatial distribution of Zn2+ and highlight the power and utility of localized probes.  相似文献   

9.
Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) are powerful tools for reporting on ions, molecules and biochemical reactions in living cells. Here we describe the development of new sensors for Zn2+based on alternate FRET-pairs that do not involve the traditional CFP and YFP. Zn2+ is an essential micronutrient and plays fundamental roles in cell biology. Consequently there is a pressing need for robust sensors to monitor Zn2+ levels and dynamics in cells with high spatial and temporal resolution. Here we develop a suite of sensors using alternate FRET pairs, including tSapphire/TagRFP, tSapphire/mKO, Clover/mRuby2, mOrange2/mCherry, and mOrange2/mKATE. These sensors were targeted to both the nucleus and cytosol and characterized and validated in living cells. Sensors based on the new FRET pair Clover/mRuby2 displayed a higher dynamic range and better signal-to-noise ratio than the remaining sensors tested and were optimal for monitoring changes in cytosolic and nuclear Zn2+. Using a green-red sensor targeted to the nucleus and cyan-yellow sensor targeted to either the ER, Golgi, or mitochondria, we were able to monitor Zn2+ uptake simultaneously in two compartments, revealing that nuclear Zn2+ rises quickly, whereas the ER, Golgi, and mitochondria all sequester Zn2+ more slowly and with a delay of 600–700 sec. Lastly, these studies provide the first glimpse of nuclear Zn2+ and reveal that nuclear Zn2+ is buffered at a higher level than cytosolic Zn2+.  相似文献   

10.
Activation of the cAMP receptor protein (CRP) from Escherichia coli is highly specific to its allosteric ligand, cAMP. Ligands such as adenosine and cGMP, which are structurally similar to cAMP, fail to activate wild-type CRP. However, several cAMP-independent CRP variants (termed CRP*) exist that can be further activated by both adenosine and cGMP, as well as by cAMP. This has remained a puzzle because the substitutions in many of these CRP* variants lie far from the cAMP-binding pocket (>10 A) and therefore should not directly affect that pocket. Here we show a surprising similarity in the altered ligand specificity of four CRP* variants with a single substitution in D53S, G141K, A144T, or L148K, and we propose a common basis for this phenomenon. The increased active protein population caused by an equilibrium shift in these variants is hypothesized to preferentially stabilize ligand binding. This explanation is completely consistent with the cAMP specificity in the activation of wild-type CRP. The model also predicts that wild-type CRP should be activated even by the lower-affinity ligand, adenosine, which we experimentally confirmed. The study demonstrates that protein equilibrium is an integral factor for ligand specificity in an allosteric protein, in addition to the direct effects of ligand pocket residues.  相似文献   

11.
We have developed a novel method for multi-color spectral FRET analysis which is used to study a system of three independent FRET-based molecular sensors composed of the combinations of only three fluorescent proteins. This method is made possible by a novel routine for computing the 3-D excitation/emission spectral fingerprint of FRET from reference measurements of the donor and acceptor alone. By unmixing the 3D spectrum of the FRET sample, the total relative concentrations of the fluorophores and their scaled FRET efficiencies are directly measured, from which apparent FRET efficiencies can be computed. If the FRET sample is composed of intramolecular FRET sensors it is possible to determine the total relative concentration of the sensors and then estimate absolute FRET efficiency of each sensor. Using multiple tandem constructs with fixed FRET efficiency as well as FRET-based calcium sensors with novel fluorescent protein combinations we demonstrate that the computed FRET efficiencies are accurate and changes in these quantities occur without crosstalk. We provide an example of this method’s potential by demonstrating simultaneous imaging of spatially colocalized changes in [Ca2+], [cAMP], and PKA activity.  相似文献   

12.
Robots designed to track chemical leaks in hazardous industrial facilities1 or explosive traces in landmine fields2 face the same problem as insects foraging for food or searching for mates3: the olfactory search is constrained by the physics of turbulent transport4. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity5-6, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones7 but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells8 or toxic and illicit substances9-11. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors12. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies13. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration14 or using nanostructured gas sensors that mimic insect antennae15.  相似文献   

13.
Naturally occurring missense variants of G protein–coupled receptors with loss of function have been linked to metabolic disease in case studies and in animal experiments. The glucagon receptor, one such G protein–coupled receptor, is involved in maintaining blood glucose and amino acid homeostasis; however, loss-of-function mutations of this receptor have not been systematically characterized. Here, we observed fewer glucagon receptor missense variants than expected, as well as lower allele diversity and fewer variants with trait associations as compared with other class B1 receptors. We performed molecular pharmacological phenotyping of 38 missense variants located in the receptor extracellular domain, at the glucagon interface, or with previously suggested clinical implications. These variants were characterized in terms of cAMP accumulation to assess glucagon-induced Gαs coupling, and of recruitment of β-arrestin-1/2. Fifteen variants were impaired in at least one of these downstream functions, with six variants affected in both cAMP accumulation and β-arrestin-1/2 recruitment. For the eight variants with decreased Gαs signaling (D63ECDN, P86ECDS, V96ECDE, G125ECDC, R2253.30H, R3085.40W, V3686.59M, and R3787.35C) binding experiments revealed preserved glucagon affinity, although with significantly reduced binding capacity. Finally, using the UK Biobank, we found that variants with wildtype-like Gαs signaling did not associate with metabolic phenotypes, whereas carriers of cAMP accumulation-impairing variants displayed a tendency toward increased risk of obesity and increased body mass and blood pressure. These observations are in line with the essential role of the glucagon system in metabolism and support that Gαs is the main signaling pathway effecting the physiological roles of the glucagon receptor.  相似文献   

14.
Dynamic and localized actions of cAMP are central to the generation of discrete cellular events in response to a range of G(s)-coupled receptor agonists. In the present study we have employed a cyclic nucleotide-gated channel sensor to report acute changes in cAMP in the restricted cellular microdomains adjacent to two different G(s)-coupled receptor pathways, beta(2)-adrenoceptors and prostanoid receptors that are expressed endogenously in HEK293 cells. We probed by either selective small interference RNA-mediated knockdown or dominant negative overexpression the contribution of key signaling components in the rapid attenuation of the local cAMP signaling and subsequent desensitization of each of these G-protein-coupled receptor signaling pathways immediately following receptor activation. Direct measurements of cAMP changes just beneath the plasma membrane of single HEK293 cells reveal novel insights into key regulatory roles provided by protein kinase A-RII, beta-arrestin2, cAMP phosphodiesterase-4D3, and cAMP phosphodiesterase-4D5. We provide new evidence for distinct modes of cAMP down-regulation in these two G(s)-linked pathways and show that these distinct G-protein-coupled receptor signaling systems are subject to unidirectional, heterologous desensitization that allows for limited cross-talk between distinct, dynamically regulated pools of cAMP.  相似文献   

15.
We have examined the regulation of two key enzymes that control polyamine biosynthesis-L-ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) - by agents increasing cAMP in S49 lymphoma cells. Incubation of wild type S49 cells with beta-adrenergic agonists (terbutaline or isoproterenol) inhibited ODC and SAMDC activities rapidly (less than 2 hr). more quickly than these agents arrested the cells in the G1 phase of the cell cycle. The beta-adrenergic antagonist propranolol blocked inhibition of ODC activity produced by isoproterenol, but only if added simultaneously or less than 4 hr after the agonist. Incubation of wild type S49 cells with cholera toxin or PGE1 also inhibited ODC activity. Decreases in ODC activity produced by beta-adrenergic agonists, cholera toxin, PGE1 or dibutyryl cAMP were all enhanced by the phosphodiesterase inhibitor Ro 20-1724. Results of studies of ODC and SAMDC activity in S49 variants having lesions in the pathway of cAMP generation and action were as follows: kin- cells (which lack cAMP-dependent protein kinase activity) showed no inhibition of ODC by any agent; AC- cells (which have absent nucleotide coupling units in their adenylate cyclase system) only demonstrated inhibition in response to dibutyryl cAMP; UNC cells (which have deficient coupling of hormone receptors and adenylate cyclase) only demonstrated inhibition in response to dibutyryl cAMP and cholera toxin, and beta-depleted cells (which have a decreased number of beta-adrenergic receptors) responded as did wild type cells except for absent response to isoproterenol. We conclude that inhibition of ODC and SAMDC activity in S49 cells is an early response to agents that increase cAMP and that this action occurs via the "classical" pathways of activation of adenylate cyclase and protein kinase. These results in S49 cells contrast with evidence in other systems in which cAMP has been suggested to enhance polyamine biosynthesis, perhaps through alternative mechanisms.  相似文献   

16.
FRET-based sensors for cyclic Adenosine Mono Phosphate (cAMP) have revolutionized the way in which this important intracellular messenger is studied. The currently prevailing sensors consist of the cAMP-binding protein Epac1, sandwiched between suitable donor- and acceptor fluorescent proteins (FPs). Through a conformational change in Epac1, alterations in cellular cAMP levels lead to a change in FRET that is most commonly detected by either Fluorescence Lifetime Imaging (FLIM) or by Sensitized Emission (SE), e.g., by simple ratio-imaging. We recently reported a range of different Epac-based cAMP sensors with high dynamic range and signal-to-noise ratio. We showed that constructs with cyan FP as donor are optimal for readout by SE, whereas other constructs with green FP donors appeared much more suited for FLIM detection. In this study, we present a new cAMP sensor, termed (T)Epac(VV), which employs mTurquoise as donor. Spectrally very similar to CFP, mTurquoise has about doubled quantum efficiency and unlike CFP, its fluorescence decay is strictly single-exponential. We show that (T)Epac(VV) appears optimal for detection both by FLIM and SE, that it has outstanding FRET span and signal-to-noise ratio, and improved photostability. Hence, (T)Epac(VV) should become the cAMP sensor of choice for new experiments, both for FLIM and ratiometric detection.  相似文献   

17.
18.
Proteins with EF-hand calcium-binding motifs are essential for many cellular processes, but are also associated with cancer, autism, cardiac arrhythmias, and Alzheimer''s, skeletal muscle and neuronal diseases. Functionally, all EF-hand proteins are divided into two groups: (1) calcium sensors, which function to translate the signal to various responses; and (2) calcium buffers, which control the level of free Ca2+ ions in the cytoplasm. The borderline between the two groups is not clear, and many proteins cannot be described as definitive buffers or sensors. Here, we describe two highly-conserved structural motifs found in all known different families of the EF-hand proteins. The two motifs provide a supporting scaffold for the DxDxDG calcium binding loop and contribute to the hydrophobic core of the EF hand domain. The motifs allow more precise identification of calcium buffers and calcium sensors. Based on the characteristics of the two motifs, we could classify individual EF-hand domains into five groups: (1) Open static; (2) Closed static; (3) Local dynamic; (4) Dynamic; and (5) Local static EF-hand domains.  相似文献   

19.
Separase is best known for its function in sister chromatid separation at the metaphase-anaphase transition. It also has a role in centriole disengagement in late mitosis/G1. To gain insight into the activity of separase at centrosomes, we developed two separase activity sensors: mCherry-Scc1(142-467)-ΔNLS-eGFP-PACT and mCherry-kendrin(2059-2398)-eGFP-PACT. Both localize to the centrosomes and enabled us to monitor local separase activity at the centrosome in real time. Both centrosomal sensors were cleaved by separase before anaphase onset, earlier than the corresponding H2B-mCherry-Scc1(142-467)-eGFP sensor at chromosomes. This indicates that substrate cleavage by separase is not synchronous in the cells. Depletion of the proteins astrin or Aki1, which have been described as inhibitors of centrosomal separase, did not led to a significant activation of separase at centrosomes, emphasizing the importance of direct separase activity measurements at the centrosomes. Inhibition of polo-like kinase Plk1, on the other hand, decreased the separase activity towards the Scc1 but not the kendrin reporter. Together these findings indicate that Plk1 regulates separase activity at the level of substrate affinity at centrosomes and may explain in part the role of Plk1 in centriole disengagement.  相似文献   

20.
Recently, the use of hybrid double network (DN) hydrogels has become prominent due to their enhanced mechanical properties, which has opened the door for new applications of these soft materials. Only a few of these gels have demonstrated both injectable and moldable capabilities. In this work, we report the mechanical properties, gauge factor (GF) values and demonstrate both the injectability and moldability of a gelatin/polyacrylamide DN hydrogel. We optimized several parameters, such as, gelatin to polyacrylamide ratio, reactant concentrations and metal ion concentration, to produce a gelatin/polyacrylamide hydrogel with superior mechanical properties. The highest water content gel was capable of withstanding strains of 5000% before failure. These gels were facilely injected into molds where they effectively changed shape and maintained similar properties prior to remolding. When 20 mM calcium was doped into a similar gel, a tensile strength of 1.71 MPa was achieved. Aside from improving the mechanical properties of the gels, both Ca2+ and Mg2+ also improved their conductivity, so they were tested for use as strain sensors. The sensitivity of the hydrogel strain sensors were measured using the GF. For the 20 mM Ca2+ hydrogel, these GF values ranged from 1.63 to 6.85 for strains of 100% to 2100% respectively. Additionally, the sensors showed good stability over continuous cyclic stretching, demonstrating their long term reliability for strain sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号