首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
The development of novel antimicrobial drugs represents a cutting edge research topic. In this study, 20 salicylanilide N,N-disubstituted carbamates and thiocarbamates were designed, synthesised and characterised by IR, 1H NMR and 13C NMR. The compounds were evaluated in vitro as potential antimicrobial agents against Mycobacterium tuberculosis and nontuberculous mycobacteria (Mycobacterium avium and Mycobacterium kansasii) as well as against eight bacterial and fungal strains. Additionally, we investigated the inhibitory effect of these compounds on mycobacterial isocitrate lyase and cellular toxicity. The minimum inhibitory concentrations (MICs) against mycobacteria were from 4 μM for thiocarbamates and from 16 μM for carbamates. Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, were inhibited with MICs from 0.49 μM by thiocarbamates, whilst Gram-negative bacteria and most of the fungi did not display any significant susceptibility. All (thio)carbamates mildly inhibited isocitrate lyase (up to 22%) at a concentration of 10 μM. The (thio)carbamoylation of the parent salicylanilides led to considerably decreased cytotoxicity and thus improved the selectivity indices (up to 175). These values indicate that some derivatives are attractive candidates for future research.  相似文献   

2.
A series of 27 salicylanilide diethyl phosphates was prepared as a part of our on-going search for new antimicrobial active drugs. All compounds exhibited in vitro activity against Mycobacterium tuberculosis, Mycobacterium kansasii and Mycobacterium avium strains, with minimum inhibitory concentration (MIC) values of 0.5–62.5 μmol/L. Selected salicylanilide diethyl phosphates also inhibit multidrug-resistant tuberculous strains at the concentration of 1 μmol/L. Salicylanilide diethyl phosphates also exhibited mostly the activity against Gram-positive bacteria (MICs ⩾1.95 μmol/L), whereas their antifungal activity is significantly lower. The IC50 values for Hep G2 cells were within the range of 1.56–33.82 μmol/L, but there is no direct correlation with MICs for mycobacteria.  相似文献   

3.
Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman’s spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors.  相似文献   

4.
Various 5-nitro-2-furoic acid hydrazones were synthesized and evaluated for in vitro activities against log and starved phase culture of two mycobacterial species and Mycobacterium tuberculosis (MTB) isocitrate lyase (ICL) enzyme inhibition studies. Among twenty one compounds, 5-nitro-N′-[(5-nitro-2-furyl)methylidene]-2-furohydrazide (4o) was found to be the most active compound in vitro with MICs of 2.65 and 10.64 μM against log- and starved-phase culture of MTB. Compound 4o also showed good enzyme inhibition of MTB ICL at 10 μM. The docking studies also confirmed the binding potential of the compounds at the ICL active site.  相似文献   

5.
A series of twenty eight molecules of ethyl 5-(piperazin-1-yl)benzofuran-2-carboxylate and 3-(piperazin-1-yl)benzo[d]isothiazole were designed by molecular hybridization of thiazole aminopiperidine core and carbamide side chain in eight steps and were screened for their in vitro Mycobacterium smegmatis (MS) GyrB ATPase assay, Mycobacterium tuberculosis (MTB) DNA gyrase super coiling assay, antitubercular activity, cytotoxicity and protein–inhibitor interaction assay through differential scanning fluorimetry. Also the orientation and the ligand–protein interactions of the top hit molecules with MS DNA gyrase B subunit active site were investigated applying extra precision mode (XP) of Glide. Among the compounds studied, 4-(benzo[d]isothiazol-3-yl)-N-(4-chlorophenyl)piperazine-1-carboxamide (26) was found to be the most promising inhibitor with an MS GyrB IC50 of 1.77 ± 0.23 μM, 0.42 ± 0.23 against MTB DNA gyrase, MTB MIC of 3.64 μM, and was not cytotoxic in eukaryotic cells at 100 μM. Moreover the interaction of protein–ligand complex was stable and showed a positive shift of 3.5 °C in differential scanning fluorimetric evaluations.  相似文献   

6.
This Letter reports the synthesis and evaluation of some thiazolylhydrazone derivatives for their in vitro antimycobacterial activities against Mycobacterium tuberculosis H37Rv. The cytotoxic activities of all compounds were also evaluated. The compounds exhibited promising antimycobacterial activity with MICs of 1.03–72.46 μM and weak cytotoxicity (8.9–36.8% at 50 μg/mL). Among them, 1-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-2-(4-(4-nitrophenyl)thiazol-2-yl)hydrazine 10 was found to be the most active compound (MIC of 1.03 μM) with a good safety profile (16.4% at 50 μg/mL). Molecular modeling studies were done to have an idea for the mechanism of the action of the target compounds. According the docking results it can be claimed that these compounds may bind most likely to TMPK than InhA or CYP121.  相似文献   

7.
Tuberculosis is a serious infectious disease caused by human pathogen bacteria Mycobacterium tuberculosis. Bacterial drug resistance is a very significant medical problem nowadays and development of novel antibiotics with different mechanisms of action is an important goal of modern medical science. Leucyl-tRNA synthetase (LeuRS) has been recently clinically validated as antimicrobial target. Here we report the discovery of small-molecule inhibitors of M. tuberculosis LeuRS. Using receptor-based virtual screening we have identified six inhibitors of M. tuberculosis LeuRS from two different chemical classes. The most active compound 4-{[4-(4-Bromo-phenyl)-thiazol-2-yl]hydrazonomethyl}-2-methoxy-6-nitro-phenol (1) inhibits LeuRS with IC50 of 6 μM. A series of derivatives has been synthesized and evaluated in vitro toward M. tuberculosis LeuRS. It was revealed that the most active compound 2,6-Dibromo-4-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol inhibits LeuRS with IC50 of 2.27 μM. All active compounds were tested for antimicrobial effect against M. tuberculosis H37Rv. The compound 1 seems to have the best cell permeability and inhibits growth of pathogenic bacteria with IC50 = 10.01 μM and IC90 = 13.53 μM.  相似文献   

8.
Twenty eight 5-nitrothiazole derivatives were synthesized and evaluated for in vitro activities against Mycobacterium tuberculosis (MTB), cytotoxicity against HEK 293T. Among the compounds, 5-nitro-N-(5-nitrothiazol-2-yl)furan-2-carboxamide (20) was found to be the most active compound in vitro with MICs of 5.48 μM against log-phase culture of MTB and also non-toxic up to 100 μM.  相似文献   

9.
A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4am) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3am) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24 h = 15 ± 0.14 μM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24 h = 26 ± 0.09 μM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50 = 13 ± 0.04 μM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis.  相似文献   

10.
In an effort to develop potent new antituberculous drugs effective against Mycobacterium tuberculosis, we have prepared series of cinnamic derivatives (thioesters and amides) with 4-hydroxy and 4-alkoxy groups and investigated the in vitro activities of these compounds. Among them some displayed a good in vitro antibacterial activity, such as (E)-N-(2-acetamidoethyl)-3-{4-[(E)-3,7-dimethylocta-2,6-dienyloxy]phenyl}acrylamide 4b that showed a minimum inhibitory concentration of 0.1 μg/mL (0.26 μM) against M. tuberculosis H37Rv.  相似文献   

11.
A series of 27 salicylanilide-based carbamates was prepared as a part of our ongoing search for new antituberculosis drugs. These compounds exhibited very good in vitro activity against Mycobacterium tuberculosis, Mycobacterium kansasii and Mycobacterium avium and, in particular, against five multidrug-resistant strains, with MIC values between 0.5–2 μmol/L. Moreover, they displayed moderate toxicity against intestinal cells with the selectivity index being up to 96. Furthermore, acid stability and a half-life of 43 h at pH 7.4 were shown. Thus, these novel salicylanilide derivatives are drug candidates which should be seriously consider for further screening.  相似文献   

12.
A new complex triterpenoid saponin was isolated from the leaves of Calliandra pulcherrima by using chromatographic methods. On the basis of chemical evidence, spectroscopic analyses and comparison of known compounds its structure was established as 3-[(O-α-l-arabinopyranosyl-(1  2)-O-α-l-arabinopyranosyl-(1  6)-2-(acetylamino)-2-deoxy-β-d-glucopyranosyl)oxy]-(3β)-olean-12-en-28-oic acid O-β-d-xylopyranosyl-(1  3)-O-β-d-xylopyranosyl-(1  4)-O-[(β-d-glucopyranosyl-(1  3)]-O-6-deoxy-α-l-mannopyranosyl-(1  2)-6-O-[(2E,6S)-6-[[2-O-[(2E,6S)-6-[[6-deoxy-2-O-[(2E,6S)-2,6-dimethyl-1-oxo-6-(β-d-xylopyranosyloxy)-2,7-octadienyl]-β-d-glucopyranosyl]oxy]-2,6-dimethyl-1-oxo-2,7-octadienyl]-β-d-xylopyranosyl]oxy]-2,6-dimethyl-1-oxo-2,7-octadienyl]-β-d-glucopyranosyl ester (1). The haemolytic activity of the saponin was evaluated using in vitro assays, and its adjuvant potential on the cellular immune response against ovalbumin antigen was investigated using in vivo models  相似文献   

13.
Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2′-O-acetyl-α-l-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(α-l-rhamnosyloxy)benzyl]}thiocarbamate (3), together with five known phenolic glycosides (48). The structures of the new metabolites were determined on the basis of spectroscopic analyses including 1D- and 2D-NMR and mass spectrometry. The anti-inflammatory activity of isolated compounds was investigated with the lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cell line. It was found that 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (1) possessed potent NO–inhibitory activity with an IC50 value of 1.67 μM, followed by 2 (IC50 = 2.66 μM), 4 (IC50 = 2.71 μM), and 5 (IC50 = 14.4 μM), respectively. Western blots demonstrated these compounds reduced LPS-mediated iNOS expression. In the concentration range of the IC50 values, no significant cytotoxicity was noted. Structure–activity relationships following NO-release indicated: (1) the isothiocyanate group was essential for activity, (2) acetylation of the isothiocyanate derivatives at C-2′ or at C-3′ of rhamnose led to higher activity, (3) un-acetylated isothiocyanate derivatives displayed eight times less activity than the acetylated derivatives, and (4) acetylation of the thiocarbamate derivatives enhanced activity. These data indicate compounds 1, 2, 4 and 5 are responsible for the reported NO-inhibitory effect of Moringa oleifera fruits, and further studies are warranted.  相似文献   

14.
A series of novel 2-(phenylaminocarbonylmethylthio)-6-(2,6-dichlorobenzyl)-pyrimidin-4(3H)-ones have been designed and synthesized. All of the new compounds were evaluated for their anti-HIV activities in MT-4 cells. Most of these new compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 4.48 μM to 0.18 μM. Among them, 2-[(4-bromophenylamino)carbonylmethylthio]-6-(2,6-dichlorobenzyl)-5-methylpyrimidin-4(3H)-one 4b3 was identified as the most promising compound (EC50 = 0.18 ± 0.06 μM, CC50 >243.56 μM, SI >1326). The structure–activity relationship (SAR) of these new congeners is discussed.  相似文献   

15.
Thirty-eight 3-aryl-4-acyloxyethoxyfuran-2(5H)-ones were designed, prepared and tested for antibacterial activities. Some of them showed significant antibacterial activity against Gram-positive organism, Gram-negative organism and fungus. Out of these compounds, 4-(2-(3-chlorophenylformyloxy)ethoxy)-3-(4-chlorophenyl)furan-2(5H)-one (d40) showed the widest spectrum of activity with MIC50 of 2.0 μg/mL against Staphylococcus aureus, 4.3 μg/mL against Escherichia coli, 1.5 μg/mL against Pseudomonas aeruginosa and 1.2 μg/mL against Candida albicans. Our data disclosed that MIC50 values against whole cell bacteria are positive correlation with MIC50 values against tyrosyl-tRNA synthetase. Meanwhile, molecular docking of d40 into S. aureus tyrosyl-tRNA synthetase active site was also performed, and the inhibitor tightly fitting the active site might be an important reason why it has high antimicrobial activity.  相似文献   

16.
We synthesized new tropolone derivatives substituted with cyclic amines: piperidine, piperazine or pyrrolidine. The most active anti-helicase compound (IC50 = 3.4 μM), 3,5,7-tri[(4′-methylpiperazin-1′-yl)methyl]tropolone (2), inhibited RNA replication by 50% at 46.9 μM (EC50) and exhibited the lowest cytotoxicity (CC50) >1 mM resulting in a selectivity index (SI = CC50/EC50) >21. The most efficient replication inhibitor, 3,5,7-tri[(4′-methylpiperidin-1′-yl)methyl]tropolone (6), inhibited RNA replication with an EC50 of 32.0 μM and a SI value of 17.4, whereas 3,5,7-tri[(3′-methylpiperidin-1′-yl)methyl]tropolone (7) exhibited a slightly lower activity with an EC50 of 35.6 μM and a SI of 9.8.  相似文献   

17.
We have previously reported that AmyI-1-18, an octadecapeptide derived from α-amylase (AmyI-1) of rice, is a novel cationic α-helical peptide that exhibited antimicrobial activity against human pathogens, including Porphyromonas gingivalis, Pseudomonas aeruginosa, Propionibacterium acnes, Streptococcus mutans, and Candida albicans. In this study, to further investigate the potential functions of AmyI-1-18, we examined its inhibitory ability against the endotoxic activities of lipopolysaccharides (LPSs, smooth and Rc types) and lipid A from Escherichia coli. AmyI-1-18 inhibited the production of endotoxin-induced nitric oxide (NO), an inflammatory mediator, in mouse macrophages (RAW264) in a concentration-dependent manner. The results of a chromogenic Limulus amebocyte lysate assay illustrated that the ability [50% effective concentration (EC50): 0.17 μM] of AmyI-1-18 to neutralize lipid A was similar to its ability (EC50: 0.26 μM) to neutralize LPS, suggesting that AmyI-1-18 specifically binds to the lipid A moiety of LPS. Surface plasmon resonance analysis of the interaction between AmyI-1-18 and LPS or lipid A also suggested that AmyI-1-18 directly binds to the lipid A moiety of LPS because the dissociation constant (KD) of AmyI-1-18 with lipid A is 5.6 × 10−10 M, which is similar to that (4.3 × 10−10 M) of AmyI-1-18 with LPS. In addition, AmyI-1-18 could block the binding of LPS-binding protein to LPS, although its ability was less than that of polymyxin B. These results suggest that AmyI-1-18 expressing antimicrobial and endotoxin-neutralizing activities is useful as a safe and potent host defense peptide against pathogenic Gram-negative bacteria in many fields of healthcare.  相似文献   

18.
A series of polyhalo isophthalonitrile derivatives (3 and 4) that incorporate a variety of substituents at the 2-, 4-, 5- and/or 6-positions of the isophthalonitrile moieties have been designed and synthesized. These derivatives were evaluated for their antimicrobial activity against Staphylococcus aureus, Bacillus cereus (Gram-positive bacteria), Escherichia coli, Pseudomonas aeruginosa (Gram-negative bacteria); and Candida albicans (Fungi). Compounds 3 and 4 showed stronger inhibition of Gram-positive bacteria and fungi growth, and the antimicrobial ability of compound 3j (a 4-(benzylamino)-5-chloro-2,6-difluoro analog, MIC[SA] = 0.5 μg/mL; MIC[BC] = 0.4 μg/mL; MIC[CA] = 0.5 μg/mL) were close to nofloxacin and fluconazole and identified as the most potent antimicrobial agents in the series. The preliminary analysis of structure–activity relationships is also discussed.  相似文献   

19.
In order to identify new and potent candidate drugs to treat tuberculosis, a library of compounds was screened, and (S,S)-N,N′-bis-[3-(2,2′,6,6′-tetramethylbenzhydryloxy)-2-hydroxy-propyl]-ethylenediamine (S2824) was identified as a hit in the screen. This research discusses our efforts to synthesize and test 30 analogs of this hit for activity against Mycobacterium tuberculosis. Two compounds with homopiperazine ring possess high in vitro activity against drug sensitive and resistant M. tuberculosis with MICs 0.78–3.13 μg/mL (or 1.22–4.88 μM).  相似文献   

20.
A new fused tetracyclic heterocyclic compound, (4bR,10bR)-4b-hydroxy-10b,12-dihydrodibenzo[c,h][2,6]naphthyridine-5,11(4bH,6H)-dione (1), and a known compound, butyl 2-[(benzoyloxy)methyl]benzoate, spatozoate 2, were isolated from the broth culture of Serratia sp. PAMC 25557. The structure of 1 was determined by analyzing spectroscopic data. Compound 1 did not exhibit antimicrobial activity against Escherichia coli, Staphylococcus aureus, or Candida albicans. In addition, up to 100 μg/ml compound 1 did not show any toxicity against Artemia salina larvae. However, compound 1 showed DPPH free radical scavenging activity (IC50 = 16.7 ± 0.34 μg/ml). This was the first report of spatozoate isolation from bacterial sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号