首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of new therapeutic agents against the coronavirus causing Middle East Respiratory Syndrome (MERS) is a continuing imperative. The initial MERS-CoV epidemic was contained entirely through public health measures, but episodic cases continue, as there are currently no therapeutic agents effective in the treatment of MERS-CoV, although multiple strategies have been proposed. In this study, we screened 30,000 compounds from three different compound libraries against one of the essential proteases, the papain-like protease (PLpro), using a fluorescence-based enzymatic assay followed by surface plasmon resonance (SPR) direct binding analysis for hit confirmation. Mode of inhibition assays and competition SPR studies revealed two compounds to be competitive inhibitors. To improve upon the inhibitory activity of the best hit compounds, a small fragment library consisting of 352 fragments was screened in the presence of each hit compound, resulting in one fragment that enhanced the IC50 value of the best hit compound by 3-fold. Molecular docking and MM/PBSA binding energy calculations were used to predict potential binding sites, providing insight for design and synthesis of next-generation compounds.  相似文献   

2.
Selective inhibition of the aspartyl protease renin has gained attraction as an interesting approach to control hypertension and associated cardiovascular risk factors given its unique position in the renin–angiotensin system. Using a combination of high-throughput screening, parallel synthesis, X-ray crystallography and structure-based design, we identified and optimized a novel series of potent and non-chiral indole-3-carboxamides with remarkable potency for renin. The most potent compound 5k displays an IC50 value of 2 nM.  相似文献   

3.
A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C–C bond between the pyrrolidine and pyridine. Replacing this with a C–N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (Log D) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5 mg/kg resulted in unbound Cmax ~2-fold of its cell potency (PC9 H3K4Me3 0.96 μM), meeting our criteria for an in vivo tool compound from a new scaffold.  相似文献   

4.
The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.  相似文献   

5.
The identification of a proper lead compound for fructose 1,6-bisphosphatase (FBPase) is a critical step in the process of developing novel therapeutics against type-2 diabetes. Herein, we have successfully generated a library of allosteric inhibitors against FBPase as potential anti-diabetic drugs, of which, the lead compound 1b was identified through utilizing a virtual high-throughput screening (vHTS) system, which we have developed. The thiazole-based core structure was synthesized via the condensation of α-bromo-ketones with thioureas and substituents on the two aryl rings were varied. 4c was found to inhibit pig kidney FBPase approximately fivefold better than 1b. In addition, we have also identified 10b, a tight binding fragment, which can be use for fragment-based drug design purposes.  相似文献   

6.
The action of the aspartyl protease renin is the rate-limiting initial step of the renin-angiotensin-aldosterone system. Therefore, renin is a particularly promising target for blood pressure as well as onset and progression of cardiovascular and renal diseases. New pyrimidine derivatives 514 were designed in an attempt to enhance the renin inhibitory activity of compound 3 identified by our previous fragment-based drug design approach. Introduction of a basic amine essential for interaction with the two aspartic acids in the catalytic site and optimization of the S1/S3 binding elements including an induced-fit structural change of Leu114 (‘Leu-in’ to ‘Leu-out’) by a rational structure-based drug design approach led to the discovery of N-(piperidin-3-yl)pyrimidine-5-carboxamide 14, a 65,000-fold more potent renin inhibitor than compound 3. Surprisingly, this remarkable enhancement in the inhibitory activity of compound 14 has been achieved by the overall addition of only seven heavy atoms to compound 3. Compound 14 demonstrated excellent selectivity over other aspartyl proteases and moderate oral bioavailability in rats.  相似文献   

7.
Despite the extensive literature describing the role of the ATP-gated P2X3 receptors in a variety of physiological processes the potential of antagonists as therapeutic agents has been limited by the lack of drug-like selective molecules. In this paper we report the discovery and optimization of RO-85, a novel drug-like, potent and selective P2X3 antagonist. High-throughput screening of the Roche compound collection identified a small hit series of heterocyclic amides from a large parallel synthesis library. Rapid optimization, facilitated by high-throughput synthesis, focusing on increasing potency and improving drug-likeness resulted in the discovery of RO-85.  相似文献   

8.
19F NMR has recently emerged as an efficient, sensitive tool for analyzing protein binding to small molecules, and surface plasmon resonance (SPR) is also a popular tool for this purpose. Herein a combination of 19F NMR and SPR was used to find novel binders to the ATP-binding pocket of MAP kinase extracellular regulated kinase 2 (ERK2) by fragment screening with an original fluorinated-fragment library. The 19F NMR screening yielded a high primary hit rate of binders to the ERK2 ATP-binding pocket compared with the rate for the SPR screening. Hit compounds were evaluated and categorized according to their ability to bind to different binding sites in the ATP-binding pocket. The binding manner was characterized by using isothermal titration calorimetry and docking simulation. Combining 19F NMR with other biophysical methods allows the identification of multiple types of hit compounds, thereby increasing opportunities for drug design using preferred fragments.  相似文献   

9.
The authors have developed a high-throughput screen (HTS) that allows for the identification of potential inhibitors of the severe acute respiratory syndrome coronavirus (SARS CoV) from large compound libraries. The luminescent-based assay measures the inhibition of SARS CoV-induced cytopathic effect (CPE) in Vero E6 cells. The assay was validated in 96-well plates in a BSL3 containment facility. The assay is sensitive and robust, with Z values > 0.6, signal to background (S/B) > 16, and signal to noise (S/N) > 3. The assay was further validated with 2 different diversity sets of compounds against the SARS CoV. The "hit" rate for both libraries was approximately 0.01%. The validated HTS assay was then employed to screen a 100,000-compound library against SARS CoV. The hit rate for the library in a single-dose format was determined to be approximately 0.8%. Screening of the 3 libraries resulted in the identification of several novel compounds that effectively inhibited the CPE of SARS CoV in vitro-compounds which will serve as excellent lead candidates for further evaluation. At a 10-microM concentration, 3 compounds with selective indexes (SI50) of > 53 were discovered.  相似文献   

10.
A combination approach of a fragment screening and “SAR by catalog” was used for the discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Initial screening of 3695-fragment library against bromodomain 1 of BRD4 using thermal shift assay (TSA), followed by initial hit validation, resulted in 73 fragment hits, which were used to construct a follow-up library selected from available screening collection. Additionally, analogs of inactive fragments, as well as a set of randomly selected compounds were also prepared (3?×?3200 compounds in total). Screening of the resulting sets using TSA, followed by re-testing at several concentrations, counter-screen, and TR-FRET assay resulted in 18 confirmed hits. Compounds derived from the initial fragment set showed better hit rate as compared to the other two sets. Finally, building dose-response curves revealed three compounds with IC50?=?1.9–7.4?μM. For these compounds, binding sites and conformations in the BRD4 (4UYD) have been determined by docking.  相似文献   

11.
Fyn tyrosine kinase inhibitors are considered potential therapeutic agents for a variety of human cancers. Furthermore, the involvement of Fyn kinase in signalling pathways that lead to severe pathologies, such as Alzheimer’s and Parkinson’s diseases, has also been demonstrated. In this study, starting from 3-(benzo[d][1,3]dioxol-5-ylamino)-6-methyl-1,2,4-triazin-5(2H)-one (VS6), a hit compound that showed a micromolar inhibition of Fyn (IC50?=?4.8?μM), we computationally investigated the binding interactions of the 3-amino-1,2,4-triazin-5(2H)-one scaffold and started a preliminary hit to lead optimisation. This analysis led us to confirm the hypothesised binding mode of VS6 and to identify a new derivative that is about 6-fold more active than VS6 (compound 3, IC50?=?0.76?μM).  相似文献   

12.
Nicotinamide phosphoribosyltransferase is a key metabolic enzyme that is a potential target for oncology. Utilizing publicly available crystal structures of NAMPT and in silico docking of our internal compound library, a NAMPT inhibitor, 1, obtained from a phenotypic screening effort was replaced with a more synthetically tractable scaffold. This compound then provided an excellent foundation for further optimization using crystallography driven structure based drug design. From this approach, two key motifs were identified, the (S,S) cyclopropyl carboxamide and the (S)-1-N-phenylethylamide that endowed compounds with excellent cell based potency. As exemplified by compound 27e such compounds could be useful tools to explore NAMPT biology in vivo.  相似文献   

13.
Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ~6000 small molecules in search of potential picornavirus 3C protease (3Cpro) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3Cpro and HRV 3Cpro with IC50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development.  相似文献   

14.
Fragment-based lead discovery is a new approach for lead generation that has emerged in the past decade. Because the initial fragments identified in the fragment screening typically show weak binding affinity, an intensive medicinal chemistry effort would be required to grow initial fragments into a potential lead compound. Here we demonstrate a kinase focused evolved fragment (KFEF) library, constructed by click chemistry-based fragment assembly, that is a valuable source of kinase inhibitors. This combinatorial assembly of two fragments, kinase-privileged alkyne fragments and diversified azide fragments, by two cycloaddition reactions shows a unique potential for the one-step synthesis of structurally diverse evolved fragments. The screening of this triazole-based KFEF library allowed the rapid identification of potent lead candidates for FLT3 and GSK3β kinase.  相似文献   

15.
Cardiac myosin-binding protein C (cMyBP-C) interacts with actin and myosin to modulate cardiac muscle contractility. These interactions are disfavored by cMyBP-C phosphorylation. Heart failure patients often display decreased cMyBP-C phosphorylation, and phosphorylation in model systems has been shown to be cardioprotective against heart failure. Therefore, cMyBP-C is a potential target for heart failure drugs that mimic phosphorylation or perturb its interactions with actin/myosin. Here we have used a novel fluorescence lifetime-based assay to identify small-molecule inhibitors of actin-cMyBP-C binding. Actin was labeled with a fluorescent dye (Alexa Fluor 568, AF568) near its cMyBP-C binding sites; when combined with the cMyBP-C N-terminal fragment, C0-C2, the fluorescence lifetime of AF568-actin decreases. Using this reduction in lifetime as a readout of actin binding, a high-throughput screen of a 1280-compound library identified three reproducible hit compounds (suramin, NF023, and aurintricarboxylic acid) that reduced C0-C2 binding to actin in the micromolar range. Binding of phosphorylated C0-C2 was also blocked by these compounds. That they specifically block binding was confirmed by an actin-C0-C2 time-resolved FRET (TR-FRET) binding assay. Isothermal titration calorimetry (ITC) and transient phosphorescence anisotropy (TPA) confirmed that these compounds bind to cMyBP-C, but not to actin. TPA results were also consistent with these compounds inhibiting C0-C2 binding to actin. We conclude that the actin-cMyBP-C fluorescence lifetime assay permits detection of pharmacologically active compounds that affect cMyBP-C-actin binding. We now have, for the first time, a validated high-throughput screen focused on cMyBP-C, a regulator of cardiac muscle contractility and known key factor in heart failure.  相似文献   

16.
A novel method for applying high-throughput docking to challenging metalloenzyme targets is described. The method utilizes information-based virtual transformation of library carboxylates to hydroxamic acids prior to docking, followed by compound acquisition, one-pot (two steps) chemical synthesis and in vitro screening. In two experiments targeting the botulinum neurotoxin serotype A metalloprotease light chain, hit rates of 32% and 18% were observed.  相似文献   

17.
Novel small molecule antagonists of NPBWR1 (GPR7) are herein reported. A high-throughput screening (HTS) of the Molecular Libraries-Small Molecule Repository library identified 5-chloro-4-(4-methoxyphenoxy)-2-(p-tolyl)pyridazin-3(2H)-one as a NPBWR1 hit antagonist with micromolar activity. Design, synthesis and structure–activity relationships study of the HTS-derived hit led to the identification of 5-chloro-2-(3,5-dimethylphenyl)-4-(4-methoxyphenoxy)pyridazin-3(2H)-one lead molecule with submicromolar antagonist activity at the target receptor and high selectivity against a panel of therapeutically relevant off-target proteins. This lead molecule may provide a pharmacological tool to clarify the molecular basis of the in vivo physiological function and therapeutic utility of NPBWR1 in diverse disease areas including inflammatory pain and eating disorders.  相似文献   

18.
In this study, we report the identification of potent benzimidazoles as PDE10A inhibitors. We first identified imidazopyridine 1 as a high-throughput screening hit compound from an in-house library. Next, optimization of the imidazopyridine moiety to improve inhibitory activity gave imidazopyridinone 10b. Following further structure–activity relationship development by reducing lipophilicity and introducing substituents, we acquired 35, which exhibited both improved metabolic stability and reduced CYP3A4 time-dependent inhibition.  相似文献   

19.
In continuation of our efforts toward hit identification and optimization for a B-Raf kinase project, we have employed a scaffold hopping strategy. The original HTS hit scaffold pyrazolo[1,5-a]pyrimidine was replaced with different thienopyrimidine and thienopyridine scaffolds to append the optimal pharmacophore moieties in order to generate novel B-raf kinase inhibitors with desirable potency and properties. This strategy led to the identification of additional lead compound 11b which had good enzyme and cell potency, while maintaining selectivity over a number of kinases.  相似文献   

20.
Starting from the oxindole 2a identified through a high-throughput screening campaign, a series of NaV1.7 blockers were developed. Following the elimination of undesirable structural features, preliminary optimization of the oxindole C-3 and N-1 substituents afforded the simplified analogue 9b, which demonstrated a 10-fold increase in target potency versus the original HTS hit. A scaffold rigidification strategy then led to the discovery of XEN907, a novel spirooxindole NaV1.7 blocker. This lead compound, which in turn showed a further 10-fold increase in potency, represents a promising structure for further optimization efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号