首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antivirulence as a new antibacterial approach for chemotherapy   总被引:1,自引:0,他引:1  
Bacterial resistance to antibiotics is an issue that has led to the search for new antibacterial approaches. Drugs targeting virulence is an alternative approach to treat infections due to resistant bacteria. There is extensive literature and knowledge in the field of bacterial pathogenesis and genomic determinant of virulence. As therapeutic targets, virulence factors have been primarily addressed in the vaccine field to prevent infection by specific pathogens. Recently novel strategies to identify virulence inhibitors have been numerous and several new compounds were recently reported. This review emphasizes the new virulence inhibitors that have shown a biological activity and have made a proof of concept that disarming bacteria lead to the inhibition of bacterial infection in experimental models in vivo. Moreover, some of these new antivirulence compounds are able to inhibit the virulence of different related pathogenic species, indicating that it is possible to target common virulence mechanisms. The progress reported recently with proof of concept for antivirulence molecules at the preclinical stages should allow the antivirulence concept to become a reality as a new antibacterial approach.  相似文献   

2.
Clinically significant antibiotic resistance has evolved against virtually every antibiotic deployed. Yet the development of new classes of antibiotics has lagged far behind our growing need for such drugs. Rather than focusing on therapeutics that target in vitro viability, much like conventional antibiotics, an alternative approach is to target functions essential for infection, such as virulence factors required to cause host damage and disease. This approach has several potential advantages including expanding the repertoire of bacterial targets, preserving the host endogenous microbiome, and exerting less selective pressure, which may result in decreased resistance. We review new approaches to targeting virulence, discuss their advantages and disadvantages, and propose that in addition to targeting virulence, new antimicrobial development strategies should be expanded to include targeting bacterial gene functions that are essential for in vivo viability. We highlight both new advances in identifying these functions and prospects for antimicrobial discovery targeting this unexploited area.  相似文献   

3.
Bacterial protein secretion is a highly orchestrated process that is essential for infection and virulence. Despite extensive efforts to predict or experimentally detect proteins that are secreted, the characterization of the bacterial secretome has remained challenging. A central event in protein secretion is the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein for secretion via the general secretory pathway, and the arylomycins are a class of natural products that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. Here, using an arylomycin derivative, along with two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identify 11 proteins whose secretion from stationary-phase Staphylococcus epidermidis is dependent on SPase activity, 9 of which are predicted to be translated with canonical N-terminal signal peptides. In addition, we find that the presence of extracellular domains of lipoteichoic acid synthase (LtaS) and the β-lactam response sensor BlaR1 in the medium is dependent on SPase activity, suggesting that they are cleaved at noncanonical sites within the protein. In all, the data define the proteins whose stationary-phase secretion depends on SPase and also suggest that the arylomycins should be valuable chemical biology tools for the study of protein secretion in a wide variety of different bacteria.  相似文献   

4.
Type I signal peptidase is the enzyme responsible for cleaving off the amino-terminal signal peptide from proteins that are secreted across the bacterial cytoplasmic membrane. It is an essential membrane bound enzyme whose serine/lysine catalytic dyad resides on the exo-cytoplasmic surface of the bacterial membrane. This review discusses the progress that has been made in the structural and mechanistic characterization of Escherichia coli type I signal peptidase (SPase I) as well as efforts to develop a novel class of antibiotics based on SPase I inhibition. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

5.
6.
The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P.?aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P.?aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P.?aeruginosa infection.  相似文献   

7.
Bacterial virulence mechanisms are attractive targets for antibiotic development because they are required for the pathogenesis of numerous global infectious disease agents. The bacterial secretion systems used to assemble the surface structures that promote adherence and deliver protein virulence effectors to host cells could comprise one such therapeutic target. In this study, we developed and performed a high-throughput screen of small molecule libraries and identified one compound, a 2-imino-5-arylidene thiazolidinone that blocked secretion and virulence functions of a wide array of animal and plant Gram-negative bacterial pathogens. This compound inhibited type III secretion-dependent functions, with the exception of flagellar motility, and type II secretion-dependent functions, suggesting that its target could be an outer membrane component conserved between these two secretion systems. This work provides a proof of concept that compounds with a broad spectrum of activity against Gram-negative bacterial secretion systems could be developed to prevent and treat bacterial diseases.  相似文献   

8.
Many Gram‐negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.  相似文献   

9.
The co-evolutionary relationship between pathogen and host has led to a regulatory cycle between virulence factors needed for survival and antivirulence factors required for host transmission. This is exemplified in Salmonella spp. by the zirTS antivirulence genes: a secretion pathway comprised of the outer membrane transporter ZirT, and its secreted partner, ZirS. ZirTS act within the gastrointestinal tract to function as a virulence modulator and during Salmonella shedding in anticipation of a new host. Together, ZirT and ZirS decrease virulence by lowering bacterial colonization at systemic sites through an unknown mechanism. To understand this mechanism, we have probed the zirTS pathway both structurally and biochemically. The NMR derived structural ensemble of the C-terminal domain of ZirS reveals an immunoglobin superfamily fold (IgSF). Stable isotope labeling by amino acids in cell culture experiments show that the ZirS IgSF domain interacts with its transporter ZirT, and reveal a new protein interaction partner of the pathway, a protein encoded adjacent to zirTS that we have designated as ZirU. ZirU is secreted by ZirT and is also a predicted IgSF. Biochemical analysis delineates ZirT into an N-terminal porin-like β domain and C-terminal extracellular soluble IgSF domain, whereas biophysical characterization suggests that the transporter undergoes self-association in a concentration-dependent manner. We observe that ZirS and ZirU directly interact with each other and with the extracellular domains of ZirT. Here we show that the zir antivirulence pathway is a multiprotein immunoglobulin adhesion system consisting of a complex interplay between ZirS, ZirT, and ZirU.  相似文献   

10.
Bacterial pathogens are dependent on virulence factors to efficiently colonize and propagate within their hosts. Many Gram-negative bacterial pathogens rely on specialized proteinaceous secretion systems that inject virulence factors, termed effectors, directly into host cells. These bacterial effector proteins perform various functions within host cells; however, regulation of their function within the host cell is highly enigmatic. It is becoming increasingly apparent that many of these effectors directly influence and regulate each other and their mechanisms within the host cell. We discuss the emerging theme of bacterial effector interplay impacting infection and the importance of investigating this topic.  相似文献   

11.
Taking possession: biogenesis of the Salmonella-containing vacuole   总被引:7,自引:1,他引:6  
The Gram-negative pathogen Salmonella enterica can survive and replicate within a variety of mammalian cells. Regardless of the cell type, internalized bacteria survive and replicate within the Salmonella -containing vacuole, the biogenesis of which is dependent on bacterially encoded virulence factors. In particular, Type III secretion systems translocate bacterial effector proteins into the eukaryotic cell where they can specifically interact with a variety of targets. Salmonella has two distinct Type III secretion systems that are believed to have completely different functions. The SPI2 system is induced intracellularly and is required for intracellular survival in macrophages; it plays no role in invasion but is categorized as being required for Salmonella -containing vacuole biogenesis. In contrast, the SPI1 Type III secretion system is induced extracellularly and is essential for invasion of nonphagocytic cells. Its role in post-invasion processes has not been well studied. Recent studies indicate that Salmonella -containing vacuole biogenesis may be more dependent on SPI1 than previously believed. Other non-SPI2 virulence factors and the host cell itself may play critical roles in determining the intracellular environment of this facultative intracellular pathogen. In this review we discuss the recent advances in determining the mechanisms by which Salmonella regulate Salmonella -containing vacuole biogenesis and the implications of these findings.  相似文献   

12.
Quorum sensing, the cell-to-cell communication system mediated by autoinducers, is responsible for regulation of virulence factors, infections, invasion, colonization, biofilm formation, and antibiotic resistance within bacterial populations. Concomitantly, quorum quenching is a process that involves attenuation of virulence factors by inhibiting or degrading quorum signaling autoinducers. Survival of endophytic microorganisms, commonly known as endophytes, in planta is a continuous mêlée with invading pathogens and pests. In order to survive in their microhabitats inside plants, endophytes have co-evolved to not only utilize an arsenal of biologically active defense compounds but also impede communication between invading pathogens. Such antivirulence strategies prevent pathogens from communicating with or recognizing each other and thus, colonizing plants. The quenching phenomena often involves microbial crosstalk within single or mixed population(s) vis-à-vis gene expression, and production/modulation of quenching enzymes coupled to various antagonistic and synergistic interactions. This concept is particularly interesting because it can be biotechnologically translated in the future to quorum inhibiting antivirulence therapies without triggering resistance in bacteria, which is currently a major problem worldwide that cannot be tackled only with antimicrobial therapies. In this mini-review, we highlight the quorum quenching capacity of endophytes with respect to attenuation of virulence factors and aiding in plant defense response. Further, benefits and potential challenges of using such systems in biotechnology are discussed.  相似文献   

13.
Proteins secreted by bacteria perform functions vital for cell survival and play a role in virulence in Mycobacterium tuberculosis. M. tuberculosis lepB (Rv2903c) encodes the sole homolog of the type I signal peptidase (SPase). The lepB gene is essential in M. tuberculosis, since we could delete the chromosomal copy only when a second functional copy was provided elsewhere. By placing expression under the control of an anhydrotetracycline-inducible promoter, we confirmed that reduced lepB expression was detrimental to growth. Furthermore, we demonstrated that a serine-lysine catalytic dyad, characteristic for SPase function, is required for LepB function. We confirmed the involvement of LepB in the secretion of a reporter protein fused to an M. tuberculosis signal peptide. An inhibitor of LepB (MD3; a beta-aminoketone) was active against M. tuberculosis, exhibiting growth inhibition and bactericidal activity. Overexpression of lepB reduced the susceptibility of M. tuberculosis to MD3, and downregulation resulted in increased susceptibility, suggesting that LepB is the true target of MD3. MD3 lead to a rapid loss of viability and cell lysis. Interestingly, the compound had increased potency in nonreplicating cells, causing a reduction in viable cell numbers below the detection limit after 24 h. These data suggest that protein secretion is required to maintain viability under starvation conditions and that secreted proteins play a critical role in generating and surviving the persistent state. We conclude that LepB is a promising novel target for drug discovery in M. tuberculosis, since its inhibition results in rapid killing of persistent and replicating organisms.  相似文献   

14.
Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection.  相似文献   

15.
16.
Type IV secretion systems and their effectors in bacterial pathogenesis   总被引:2,自引:0,他引:2  
Type IV secretion systems (T4SSs) are membrane-associated transporter complexes used by various bacteria to deliver substrate molecules to a wide range of target cells. T4SSs are involved in horizontal DNA transfer to other bacteria and eukaryotic cells, in DNA uptake from or release into the extracellular milieu, in toxin secretion and in the injection of virulence factors into eukaryotic host target cells by several mammalian pathogens. Rapid progress has been made towards defining the structures and functions of T4SSs, identifying the translocated effector molecules and elucidating the mechanisms by which the effectors subvert eukaryotic cellular processes during infection. These findings have had an important impact on our understanding of how these pathogens manipulate host cell functions to trigger bacterial uptake, facilitate intracellular growth and suppress defence mechanisms, thus facilitating bacterial colonization and disease development.  相似文献   

17.
Many gram-negative bacterial pathogenicity factors that function beyond the outer membrane are secreted via a contact-dependent type III secretion system. Two types of substrates are predestined for this mode of secretion, namely, antihost effectors that are translocated directly into target cells and the translocators required for targeting of the effectors across the host cell membrane. N-terminal secretion signals are important for recognition of the protein cargo by the type III secretion machinery. Even though such signals are known for several effectors, a consensus signal sequence is not obvious. One of the translocators, LcrV, has been attributed other functions in addition to its role in translocation. These functions include regulation, presumably via interaction with LcrG inside bacteria, and immunomodulation via interaction with Toll-like receptor 2. Here we wanted to address the significance of the specific targeting of LcrV to the exterior for its function in regulation, effector targeting, and virulence. The results, highlighting key N-terminal amino acids important for LcrV secretion, allowed us to dissect the role of LcrV in regulation from that in effector targeting/virulence. While only low levels of exported LcrV were required for in vitro effector translocation, as deduced by a cell infection assay, fully functional export of LcrV was found to be a prerequisite for its role in virulence in the systemic murine infection model.  相似文献   

18.
Bacterial conjugation systems are highly promiscuous macromolecular transfer systems that impact human health significantly. In clinical settings, conjugation is exceptionally problematic, leading to the rapid dissemination of antibiotic resistance genes and other virulence traits among bacterial populations. Recent work has shown that several pathogens of plants and mammals - Agrobacterium tumefaciens, Bordetella pertussis, Helicobacter pylori and Legionella pneumophila - have evolved secretion pathways ancestrally related to conjugation systems for the purpose of delivering effector molecules to eukaryotic target cells. Each of these systems exports distinct DNA or protein substrates to effect a myriad of changes in host cell physiology during infection. Collectively, secretion pathways ancestrally related to bacterial conjugation systems are now referred to as the type IV secretion family. The list of putative type IV family members is increasing rapidly, suggesting that macromolecular transfer by these systems is a widespread phenomenon in nature.  相似文献   

19.
Many human pathogens use Type III, Type IV, and Type VI secretion systems to deliver effectors into their target cells. The contribution of these secretion systems to microbial virulence was the main focus of a workshop organised by the International University of Andalusia in Spain. The meeting addressed structure–function, substrate recruitment, and translocation processes, which differ widely on the different secretion machineries, as well as the nature of the translocated effectors and their roles in subverting the host cell. An excellent panel of worldwide speakers presented the state of the art of the field, highlighting the involvement of bacterial secretion in human disease and discussing mechanistic aspects of bacterial pathogenicity, which can provide the bases for the development of novel antivirulence strategies.  相似文献   

20.
The bacterial type IV secretion systems (T4SSs) translocate DNA and protein substrates to bacterial or eukaryotic target cells generally by a mechanism dependent on direct cell-to-cell contact. The T4SSs encompass two large subfamilies, the conjugation systems and the effector translocators. The conjugation systems mediate interbacterial DNA transfer and are responsible for the rapid dissemination of antibiotic resistance genes and virulence determinants in clinical settings. The effector translocators are used by many Gram-negative bacterial pathogens for delivery of potentially hundreds of virulence proteins to eukaryotic cells for modulation of different physiological processes during infection. Recently, there has been considerable progress in defining the structures of T4SS machine subunits and large machine subassemblies. Additionally, the nature of substrate translocation sequences and the contributions of accessory proteins to substrate docking with the translocation channel have been elucidated. A DNA translocation route through the Agrobacterium tumefaciens VirB/VirD4 system was defined, and both intracellular (DNA ligand, ATP energy) and extracellular (phage binding) signals were shown to activate type IV-dependent translocation. Finally, phylogenetic studies have shed light on the evolution and distribution of T4SSs, and complementary structure-function studies of diverse systems have identified adaptations tailored for novel functions in pathogenic settings. This review summarizes the recent progress in our understanding of the architecture and mechanism of action of these fascinating machines, with emphasis on the ‘archetypal’ A. tumefaciens VirB/VirD4 T4SS and related conjugation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号