首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(?)-Dehydroxymethylepoxyquinomicin ((?)-DHMEQ, 1) is a specific inhibitor of NF-κB. It binds to SH group in the specific cysteine residue of NF-κB components with its epoxide moiety to inhibit DNA binding. In the present research, we have designed and synthesized an epoxide-free analog called (S)-β-salicyloylamino-α-exo-methylene-?-butyrolactone (SEMBL, 3). SEMBL inhibited DNA binding of NF-κB component p65 in vitro. It inhibited LPS-induced NF-κB activation, iNOS expression, and inflammatory cytokine secretions. It also inhibited NF-κB and cellular invasion in ovarian carcinoma ES-2 cells. Moreover, its stability in aqueous solution was greatly enhanced compared with (?)-DHMEQ. Thus, SEMBL has a potential to be a candidate for a new anti-inflammatory and anticancer agent.  相似文献   

2.
A series of aminoparthenolide analogs (637) were synthesized and evaluated for their anti-leukemic activity. Eight compounds exhibited good anti-leukemic activity with LD50’s in the low μM range (1.5–3.0 μM). Compounds 16, 24 and 30 were the most potent compounds in the series, causing greater than 90% cell death at 10 μM concentration against primary AML cells in culture, with LD50 values of 1.7, 1.8 and 1.6 μM.  相似文献   

3.
CARD recruited membrane associated protein 3 (CARMA3) is a novel scaffold protein. It belongs to the CARMA protein family, and is known to activate nuclear factor (NF)-κB. However, it is still unknown which receptor functions upstream of CARMA3 to trigger NF-κB activation. Recently, several studies have demonstrated that CARMA3 serves as an indispensable adaptor protein in NF-κB signaling under some G protein-coupled receptors (GPCRs), such as lysophosphatidic acid (LPA) receptor and angiotensin (Ang) II receptor. Mechanistically, CARMA3 recruits its essential downstream molecules Bcl10 and MALT1 to form the CBM (CARMA3-Bcl10-MALT1) signalosome whereby it triggers NF-κB activation. GPCRs and NF-κB play pivotal roles in the regulation of various cellular functions, therefore, aberrant regulation of the GPCR/NF-κB signaling axis leads to the development of many types of diseases, such as cancer and atherogenesis. Recently, the GPCR/CARMA3/NF-κB signaling axis has been confirmed in these specific diseases and it plays crucial roles in the pathogenesis of disease progression. In ovarian cancer cell lines, knockdown of CARMA3 abolishes LPA receptor-induced NF-κB activation, and reduces LPA-induced ovarian cancer invasion. In vascular smooth cells, downregulation of CARMA3 substantially impairs Ang-II-receptor-induced NF-κB activation, and in vivo studies have confirmed that Bcl10-deficient mice are protected from developing Ang-II-receptor-induced atherosclerosis and aortic aneurysms. In this review, we summarize the biology of CARMA3, describe the role of the GPCR/CARMA3/NF-κB signaling axis in ovarian cancer and atherogenesis, and speculate about the potential roles of this signaling axis in other types of cancer and diseases. With a significant increase in the identification of LPA- and Ang-II-like ligands, such as endothelin-1, which also activates NF-κB via CARMA3 and contributes to the development of many diseases, CARMA3 is emerging as a novel therapeutic target for various types of cancer and other diseases.  相似文献   

4.
5.
6.
7.
MCF7 breast cancer cell line, carrying a luciferase reporter gene under the control of nuclear factor kappa B (NF-κB)-responsive promoter, was established and used for the screening of fungal organic extracts for their ability to interfere with the NF-κB activation pathway. Twenty-eight crude fungal extracts, out of 242, were found to inhibit NF-κB reporter activity by more than 40%. Furthermore, positive extracts were used to evaluate their antiproliferative activity as well as their ability to influence the phosphorylation and degradation levels of IκBa. Fungal extracts prepared from Marasmius oreades and Cyathus striatus showed significant inhibitory effects on the NF-κB activation pathway. Taken together, our results support the notion of the presence of novel activities that might be utilized as cancer therapeutics.  相似文献   

8.
9.
Previous reports indicate that nuclear factor (NF)-κB regulates induction of human immunodeficiency virus type 1 (HIV-1) gene expression in latently infected cells. However, the role of NF-κB in cells with active HIV-1 replication is not well understood. In this study, we examined the effect of a new NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on HIV-1 replication in a human T cell line and phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PHA-PBMCs). We further explored the mechanism of DHMEQ-mediated inhibition of HIV-1 replication. DHMEQ inhibited HIV-1 replication in HIV-1-infected Molt-4 and PHA-PBMCs. DHMEQ inhibited constitutive NF-κB activity in HIV-1-infected PHA-PBMCs and HIV long terminal repeat promoter activity driven by tumor necrosis factor (TNF)-α and the trans-activator Tat. The single-round assay using vesicular stomatitis virus-pseudotyped virus in the human T cell line M8166 indicated that DHMEQ treatment resulted in decreased integration of HIV-1 provirus into the host genome and decreased HIV-1 expression. These results indicate that NF-κB regulates early events as well as the initial and accelerated expression of HIV-1 in its life cycle. Therefore, we conclude that NF-κB is a molecular target for controlling active HIV-1 replication.  相似文献   

10.
11.
The amino-epoxyquinols 6a and 6b were synthesized as soluble derivatives of an NF-κB inhibitor DHMEQ (1). In spite of the opposite configuration from 1, 6b rather than 6a affected the deactivation of NF-κB, based on NO secretion and MALDI-TOF MS analysis. It was indicated that 6b inhibited the activation by different manner from that of 1.  相似文献   

12.
13.
Boswellic acid acylates including their epimers were synthesized and screened against a panel of human cancer cell lines. They exhibited a range of cytotoxicity against various human cancer cell lines thereby leading to the development of a possible SAR. One of the identified lead compounds was found to be an inhibitor of the NF-κB and STAT proteins, warranting further investigations to be developed into a potential anticancer lead.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号