首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.  相似文献   

3.
Despite its side-effects, docetaxel (DTX) remains a first-line treatment against castration resistant prostate cancer (CRPC). Therefore, strategies to increase its anti-tumor efficacy and decrease its side effects are critically needed. Targeting of the constitutive endoplasmic reticulum (ER) stress in cancer cells is being investigated as a chemosensitization approach. We hypothesized that the simultaneous induction of ER-stress and suppression of PI3K/AKT survival pathway will be a more effective approach. In a CRPC cell line, C4-2B, we observed significant (p<0.005) enhancement of DTX-induced cytotoxicity following coexposure to thapsigargin and an AKT-inhibitor. However, since these two agents are not clinically approved, we investigated whether a combination of nelfinavir (NFR) and curcumin (CUR), known to target both these metabolic pathways, can similarly increase DTX cytotoxicity in CRPC cells. Within 24 hrs post-exposure to physiologic concentrations of NFR (5 µM) and CUR (5 µM) a significantly (p<0.005) enhanced cytotoxicity was evident with low concentration of DTX (10 nM). This 3-drug combination rapidly increased apoptosis in aggressive C4-2B cells, but not in RWPE-1 cells or in primary prostate epithelial cells (PrEC). Comparative molecular studies revealed that this 3-drug combination caused a more pronounced suppression of phosphorylated-AKT and higher induction in phosphorylated-eIF2α in C4-2B cells, as compared to RWPE-1 cells. Acute exposure (3–9 hrs) to this 3-drug combination intensified ER-stress induced pro-apoptotic markers, i.e. ATF4, CHOP, and TRIB3. At much lower concentrations, chronic (3 wks) exposures to these three agents drastically reduced colony forming units (CFU) by C4-2B cells. In vivo studies using mice containing C4-2B tumor xenografts showed significant (p<0.05) enhancement of DTX’s (10 mg/kg) anti-tumor efficacy following coexposure to NFR (20 mg/kg) & CUR (100 mg/kg). Immunohistochemical (IHC) analyses of tumor sections indicated decreased Ki-67 staining and increased TUNEL intensity in mice exposed to the 3-drug combination. Therefore, subverting ER-stress towards apoptosis using adjuvant therapy with NFR and CUR can chemosensitize the CRPC cells to DTX therapy.  相似文献   

4.
5.
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.  相似文献   

6.
Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation.  相似文献   

7.
Yes-associated protein (YAP) is an effector of the Hippo tumor suppressor pathway. The functional significance of YAP in prostate cancer has remained elusive. In this study, we first show that enhanced expression of YAP is able to transform immortalized prostate epithelial cells and promote migration and invasion in both immortalized and cancerous prostate cells. We found that YAP mRNA was upregulated in androgen-insensitive prostate cancer cells (LNCaP-C81 and LNCaP-C4-2 cells) compared to the level in androgen-sensitive LNCaP cells. Importantly, ectopic expression of YAP activated androgen receptor signaling and was sufficient to promote LNCaP cells from an androgen-sensitive state to an androgen-insensitive state in vitro, and YAP conferred castration resistance in vivo. Accordingly, YAP knockdown greatly reduced the rates of migration and invasion of LNCaP-C4-2 cells and under androgen deprivation conditions largely blocked cell division in LNCaP-C4-2 cells. Mechanistically, we found that extracellular signal-regulated kinase–ribosomal s6 kinase signaling was downstream of YAP for cell survival, migration, and invasion in androgen-insensitive cells. Finally, immunohistochemistry showed significant upregulation and hyperactivation of YAP in castration-resistant prostate tumors compared to their levels in hormone-responsive prostate tumors. Together, our results identify YAP to be a novel regulator in prostate cancer cell motility, invasion, and castration-resistant growth and as a potential therapeutic target for metastatic castration-resistant prostate cancer (CRPC).  相似文献   

8.
Despite decades of effort to develop effective therapy and to identify promising new drugs, prostate cancer is lethal once it progresses to castration-resistant disease. Studies show mis-regulation of multiple pathways in castration-resistant prostate cancer (CRPC), reflecting the heterogeneity of the tumors and also hinting that targeting androgen receptor (AR) pathway alone might not be sufficient to treat CRPC. In this study, we present evidence that the Wnt/β-catenin pathway might be activated in prostate cancer cells after androgen-deprivation to promote androgen-independent growth, partly through enhanced interaction of β-catenin with TCF4. Androgen-independent prostate cancer cells were more prone to activate a Wnt-reporter, and inhibition of the Wnt/β-catenin pathway increased sensitivity of these cells to the second-generation antiandrogen, enzalutamide. Combined treatment of enzalutamide and Wnt/β-catenin inhibitor showed increased growth repression in both androgen-dependent and -independent prostate cancer cells, suggesting therapeutic potential for this approach.  相似文献   

9.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   

10.
11.
Despite continuing research and the development of alternate therapeutic options, prostate cancer remains problematic. Chemotherapy has played a minor role as a treatment option due to its lack of efficacy. Whereas cryotherapy has received renewed attention as a treatment modality, it too fails to offer an absolute curative option. Previously, we reported on the utilization of a therapeutic model, which, in combination, increases cell death in a canine renal cell model. Based upon that study, we investigated a combination therapy model as an alternative for the treatment modality for prostate cancer. We hypothesized that the combination of chemotherapy and cryosurgery would result in enhanced cell death, thereby presenting a more effective treatment of prostate cancer. A human prostate cancer cell (PC-3) model was exposed to 5-fluorouracil (5-FU) for 2 and 4 days (prefreeze), freezing (-5 to -100 degrees C), or a combination of the two treatments, and each was assessed for effectiveness over a 2-week posttreatment period. Additionally, investigation into the mechanisms of cell death initiated by the respective therapies was performed through DNA cleavage analysis. For chemotherapy, cultures exposed to 5-FU (2-4 days) yielded a 15-25% loss in cell survival. For cryotherapy, cultures exposed to a temperature window of -5 to -20 degrees C yielded an initial 5-70% loss of viability but cells propagated over time. Cultures exposed to temperatures of -25 to -80 degrees C yielded a 90-99% (+/-4.5%) initial loss in viability with repopulation observed by 12 days postthaw. Cells frozen to -100 degrees C yielded 100% (+/-0.3%) loss of viability and exhibited no signs of propagation. For chemo-cryo therapy, combination treatment at milder temperatures (-5 to -25 degrees C) resulted in an enhanced loss of cell viability compared to that for either treatment alone. Combination treatment at lower temperatures (-40 to -80 degrees C) resulted in a complete loss of cell viability. DNA fragmentation analysis at 48 h posttreatment revealed that dead (detached) cells treated with 5-FU died primarily through apoptosis, whereas dead cells from freezing (-15 degrees C) alone died primarily through freeze-rupture and necrosis. Detached cell analysis from combination treatment at -15 degrees C revealed the presence of apoptotic, necrotic, and freeze-rupture cell death. Scanning electron micrographs of cells exposed to freezing contributing to cell death. These data demonstrate that the combination of 5-FU at sublethal doses and freezing temperatures improves human prostate cancer cell death efficacy. Further, we suggest that chemo-cryo therapy offers a potential alternative treatment for the control and eradication of prostate cancer.  相似文献   

12.
Despite recent improvements in patient outcomes using newer androgen receptor (AR) pathway inhibitors, treatment resistance in castrate resistant prostate cancer (CRPC) continues to remain a clinical problem. Co-targeting alternate resistance pathways are of significant interest to treat CRPC and delay the onset of resistance. Both the AKT and MEK signaling pathways become activated as prostate cancer develops resistance to AR-targeted therapies. This pre-clinical study explores co-targeting these pathways in AR-positive prostate cancer models. Using various in vitro models of prostate cancer disease states including androgen dependent (LNCaP), CRPC (V16D and 22RV1) and ENZ-resistant prostate cancer (MR49C and MR49F), we evaluate the relevance of targeting both AKT and MEK pathways. Our data reveal that AKT inhibition induces apoptosis and inhibits cell growth in PTEN null cell lines independently of their sensitivity to hormone therapy; however, AKT inhibition had no effect on the PTEN positive 22RV1 cell line. Interestingly, we found that MEK inhibition had greater effect on 22RV1 cells compared to LNCaP, V16D or ENZ-resistant cells MR49C and MR49F cells. In vitro, combination AKT and MEK blockade had evidence of synergy observed in some cell lines and assays, but this was not consistent across all results. In vivo, the combination of AKT and MEK inhibition resulted in more consistent tumor growth inhibition of MR49F xenografts and longer disease specific survival compared to AKT inhibitor monotherapy. As in our in vitro study, 22RV1 xenografts were more resistant to AKT inhibition while they were more sensitive to MEK inhibition. Our results suggest that targeting AKT and MEK in combination may be a valuable strategy in prostate cancer when both pathways are activated and further support the importance of characterizing the dominant oncogenic pathway in each patient’s tumor in order to select optimal therapy.  相似文献   

13.
Prostate cancer is the most prevalent cancer in US and European men and the second leading cause of cancer death in those populations. It is somewhat unique in that nearly all patients who succumb to the disease will ultimately develop bone metastasis. Morbidity from bone metastasis-referred to as skeletal-related events, which include fractures, cord compression, radiation to bone, and surgery to bone—leads to significant costs and impaired quality of life. This article reviews three agents and the roles they play in the ever-changing armamentarium of treatments for metastatic castrate-resistant prostate cancer (mCRPC). The potential benefits of these agents are discussed, as well as the continuing use of these agents and their earlier introduction in the patient with progressive mCRPC with bone metastasis.Key words: Metastatic castrate-resistant prostate cancer, Skeletal-related events, Bone metastasis, Zoledronic acid, Denosumab, Radium Ra 223 dichlorideProstate cancer is the most prevalent cancer in US and European men and the second leading cause of cancer death in those populations. It is somewhat unique in that nearly all patients who have the disease will ultimately develop bone metastasis.1 Morbidity from bone metastasis—referred to as skeletal—related events (SREs), which include fractures, cord compression, radiation to bone, and surgery to bone-leads to significant costs and impaired quality of life. An estimated 241,740 men are diagnosed with prostate cancer each year in the United States1; between 9.5% and 17.8% of these patients have M0 + M1 castrate-resistant prostate cancer (CRPC).2,3Skeletal tumor burden and fracture are both independent predictors of death in men with metastatic CRPC (mCRPC).2,3 In addition, pain is an independent prognosticator for death4; thus, agents that reduce pain may improve quality as well as quantity of life. In the past decade, three new agents have been approved in the United States for the treatment and/or prevention of SREs in men with mCRPC. However, urologists continue to under-treat this condition.5 A recent clinical trial that screened a large population of men thought to have CRPC without metastasis found nearly one third of patients to have metastatic prostate cancer.6 And a recent large clinical trial in men with mCRPC, most of whom had bone metastases, showed fewer than 50% of patients were receiving a bisphosphonate.7This article reviews these three agents and the new roles they play in the ever-changing armamentarium of treatments for mCRPC. The potential benefits of these agents are discussed, as well as the continuing use of these agents and their earlier introduction in the patient with progressive mCRPC with bone metastasis.  相似文献   

14.
Cancer cell metabolism responsive to androgen deprivation therapy (ADT) may be involved in the development and progression of prostate cancer and the ultimate failure of androgen-deprivation therapy. To investigate the metabolism regulation effects on androgen-independent growth of prostate cancer, an established LNCaP-s cell model that resembles the clinical scenario of castration-resistant prostate cancer (CRPC), was used in this current study. This cell line was cultured from androgen-sensitive LNCaP parental cells, in an androgen-reduced condition, resembling clinical androgen deprivation therapy. To assess the effects of smsDX on the invasiveness of prostate cancer cells we used wound healing assay and Matrigel™ invasion assay. We evaluated differentially expressed proteins of the parental LNCaP cells and LNCaP-s cells after ADT by means of two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF mass spectrometric analysis. The covered area in the wound and the number of cells invading through a Matrigel chamber were significantly smaller for cells treated with smsDX than they were for control cells treated with vehicle. 56 proteins were found differentially expressed in LNCaP-s cells compared to LNCaP cells, majority of them were down-regulated after ADT treatment. 104 proteins of LNCaP cells and 86 in LNCaP-s cells, separately, were found differentially expressed after treatment with smsDX, When we explored these protein functions within the website UniProtKB/Swiss-Prot, surprisingly, most of the proteins were found to be involved in the cellular metabolism and mitochondrial function regulation. LNCaP-s as potential metastatic androgen-independent cancer cells, its metabolism and mitochondrial functions could be altered by a new somatostatin derivative smsDX, the smsDX regulatory effects on metabolism in LNCaP-s deliver more therapeutic information with the treatment of CRPC.  相似文献   

15.
16.
Paclitaxel (PTX) is one of standard chemotherapy drug for patients with metastatic castration-resistant prostate cancer (mCRPC). However, PTX resistance leads to treatment failures, for which the underlying molecular mechanisms remain exclusive. In this study, we reported that PTX-induced constant HMGB1 expression and release confers to PTX resistance in mCRPC cells via activating and sustaining c-Myc signaling. PTX upregulated HMGB1 expression and triggered its release in human mCRPC cells. Silencing HMGB1 by RNAi and blocking HMGB1 release by glycyrrhizin or HMGB1 neutralizing antibody sensitized the response of PTX-resistant mCRPC cells to PTX. Release HMGB1 activated c-Myc expression. Inhibiting c-Myc expression by RNAi or c-MyC inhibitor significantly enhance the sensitivity of PTX-resistant CRPC cells to PTX. Therefore, HMGB1/c-Myc axis is critical in the development of PTX resistance, and targeting HMGB1/c-Myc axis would counteract PTX resistance in mCRPC cells.  相似文献   

17.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in prostate cancer, specifically in the most aggressive stage of the tumor (castration-resistant prostate cancer, CRPC) for which the standard treatment, docetaxel-based chemotherapy, can only improve the median survival time by few months. We previously showed that GnRH agonists exert an antitumor activity in CRPC cells; however, a link between GnRH receptors and the apoptotic machinery remains to be defined. Aim of this study was to evaluate whether, in CRPC cells, GnRH agonists might affect the expression/activity of apoptosis-related proteins and might sensitize, or resensitize, cancer cells to chemotherapeutics. We demonstrated that, in p53-positive DU145 cells, GnRH agonists: a) increase the expression of the proapoptotic protein Bax; this effect is mediated by the phosphorylation (activation) of p53, triggered by the p38 MAPK; b) potentiate the antiproliferative/proapoptotic activity of docetaxel; c) resensitize docetaxel-resistant cells to the antitumor activity of the cytotoxic drug. These data indicate that GnRH agonists sensitize and, more importantly, resensitize DU145 CRPC cells to chemotherapy in a p53-dependent manner. To confirm the crucial role of p53 in the activity of GnRH agonists, experiments were performed in p53-null PC3 cells. We found that GnRH agonists fail to increase Bax expression and do not potentiate the cytotoxic activity of docetaxel. These results may provide a rationale for novel combination treatment strategies, especially for docetaxel-resistant CRPC patients expressing a functional p53 protein.  相似文献   

18.
19.
Taxane based chemotherapy is the standard of care treatment in castration resistant prostate cancer (CRPC). There is convincing evidence that taxane therapy affects androgen receptor (AR) but the exact mechanisms have to be further elucidated. Our studies identified c-jun as a crucial key player which interacts with AR and thus determines the outcome of the taxane therapy given. Docetaxel (Doc) and paclitaxel (Pac) agents showed different effects on LNCaP and LNb4 evidenced by alteration in the protein and mRNA levels of c-jun, AR and PSA. Docetaxel-induced phophorylation of c-jun occurred before JNK phosphorylation which suggests that c-jun phosphorylation is independent of JNK pathways in prostate cancer cells. A xenograft study showed that mice treated with Pac and bicalutamide showed worse outcome supporting our hypothesis that upregulation of c-jun might act as a potent antiapoptotic factor. We observed in our in vitro studies an inverse regulation of PSA- and AR-mRNA levels in Doc treated LNb4 cells. This was also seen for kallikrein 2 (KLK 2) which followed the same pattern. Given the fact that response to taxane therapy is measured by PSA decrease we have to consider that this might not reflect the true activity of AR in CRPC patients.  相似文献   

20.
Human metastasis-associated gene 1 (MTA1) is highly associated with the metastasis of prostate cancer; however, the molecular functions of MTA1 that facilitate metastasis remain unclear. In this study, we demonstrate that the silencing of MTA1 by siRNA treatment results in the upregulation of E-cadherin expression by the phosphorylation of AKT (p-AKT) and decreases the invasiveness of prostate cancer cells. We show that MTA1 is expressed in over 90% of prostate cancer tissues, especially metastatic prostate cancer tissue, comparing to non-expression in normal prostate tissue. RT-PCR analysis and Western blot assay showed that MTA1 expression is significantly higher in highly metastatic prostate cancer PC-3M-1E8 cells (1E8) than in poorly metastatic prostate cancer PC-3M-2B4 cells (2B4). Silencing MTA1 expression by siRNA treatment in 1E8 cells increased the cellular malignant characters, including the cellular adhesive ability, decreased the cellular invasive ability and changed the polarity of cellular cytoskeleton. 1E8 cells over-expressing MTA1 had a reduced expression of E-cadherin, while 1E8 cells treated with MTA1 siRNA had a higher expression of E-cadherin. The expression of phosphorylated AKT (p-AKT) or the inhibition of p-AKT by wortmannin treatment (100 nM) significantly altered the function of MTA1 in the regulation of E-cadherin expression. Alterations in E-cadherin expression changed the role of p-AKT in cellular malignant characters. All of these results demonstrate that MTA1 plays an important role in controlling the malignant transformation of prostate cancer cells through the p-AKT/E-cadherin pathway. This study also provides a new mechanistic role for MTA1 in the regulation of prostate cancer metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号