首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Topoisomerase IIβ-binding protein 1 (TopBP1) is BRCT domain-containing protein that is required for DNA double-strand break (DSB) repair and DNA damage responses; however, its function during the early stage of spermatogenesis is still unclear. To investigate the physiological role of TopBP1, we have generated germ cell-specific TopBP1-depleted mouse model. TopBP1-deleted mice were infertile, showed a loss of germ cells and had meiotic defects. Conditional TopBP1 deletion resulted in reduced testis size, reduced number of epididymal sperm, increased apoptosis, and severely compromised fertility. TopBP1 deficiency caused defects in DMC1 and Rad51 foci formation, abnormal synaptonemal complexes and meiotic chromosome defects. Collectively, these results suggest that TopBP1 deficiency during spermatogenesis impairs the localization of proteins involved in early recombination at DSBs, results in meiotic chromosome defects and leads to infertility.  相似文献   

2.
3.
In eutherian mammals, the X and Y chromosomes undergo meiotic sex chromosome inactivation (MSCI) during spermatogenesis in males. However, following fertilization, both the paternally (Xp) and maternally (Xm) inherited X chromosomes are active in the inner cell mass of the female blastocyst, and then random inactivation of one X chromosome occurs in each cell, leading to a mosaic pattern of X-chromosome activity in adult female tissues. In contrast, marsupial females show a nonrandom pattern of X chromosome activity, with repression of the Xp in all somatic tissues. Here, we show that MSCI also occurs during spermatogenesis in marsupials in a manner similar to, but more stable than that in eutherians. These findings support the suggestion that MSCI may have provided the basis for an early dosage compensation mechanism in mammals based solely on gametogenic events, and that random X-chromosome inactivation during embryogenesis may have evolved subsequently in eutherian mammals.  相似文献   

4.
The resection of 5′-DNA ends at a double-strand break (DSB) is an essential step in recombinational repair, as it exposes 3′ single-stranded DNA (ssDNA) tails for interaction with a repair template. In mitosis, Exo1 and Sgs1 have a conserved function in the formation of long ssDNA tails, whereas this step in the processing of programmed meiotic DSBs is less well-characterized across model organisms. In budding yeast, which has been most intensely studied in this respect, Exo1 is a major meiotic nuclease. In addition, it exerts a nuclease-independent function later in meiosis in the conversion of DNA joint molecules into ZMM-dependent crossovers. In order to gain insight into the diverse meiotic roles of Exo1, we investigated the effect of Exo1 deletion in the ciliated protist Tetrahymena. We found that Exo1 together with Mre11, but without the help of Sgs1, promotes meiotic DSB end resection. Resection is completely eliminated only if both Mre11 and Exo1 are missing. This is consistent with the yeast model where Mre11 promotes resection in the 3′–5′ direction and Exo1 in the opposite 5′–3′ direction. However, while the endonuclease activity of Mre11 is essential to create an entry site for exonucleases and hence to start resection in budding yeast, Tetrahymena Exo1 is able to create single-stranded DNA in the absence of Mre11. Excluding a possible contribution of the Mre11 cofactor Sae2 (Com1) as an autonomous endonuclease, we conclude that there exists another unknown nuclease that initiates DSB processing in Tetrahymena. Consistent with the absence of the ZMM crossover pathway in Tetrahymena, crossover formation is independent of Exo1.  相似文献   

5.
6.
To elucidate the genetic system that establishes homologous chromosome pairing in monocot plants, we have isolated an asynaptic mutant of rice, designated pair2 (homologous pairing aberration in rice meiosis 2), in which 24 completely unpaired univalents are observed at pachytene and diakinesis. The mutation was caused by an insertion of the retrotransposon Tos17, as demonstrated by complementation of the mutation by transformation with the corresponding wild-type gene. The gene in which the element was inserted is orthologous to the ASY1 gene of Arabidopsis thaliana and the HOP1 gene of Saccharomyces cerevisiae. Mature PAIR2 mRNA and several splicing variants were found to be highly expressed in wild-type reproductive tissues, and lower expression was also detected in vegetative tissues. In situ hybridization and BrdU incorporation experiments revealed that PAIR2 expression is specifically enhanced in male and female meiocytes, but not in those at pre-meiotic S phase or in the pollen maturation stages. The results obtained in this study suggest that the PAIR2 gene is essential for homologous chromosome pairing in meiosis, as in the case of the genes ASY1 and HOP1. The study also suggested the possibility that a highly homologous copy of the PAIR2 gene located on a different chromosome is in fact a pseudogene.Communicated by G. Jürgens  相似文献   

7.
《Current biology : CB》2021,31(21):4800-4809.e9
  1. Download : Download high-res image (219KB)
  2. Download : Download full-size image
  相似文献   

8.
Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X‐chromosome and a unique second sex chromosome creating the following genotypes: XY*x, XX, XY*, XXY*. This Y* mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X‐chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X‐chromosomes. We present data showing, in addition to genes reported to escape X‐inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X‐chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y* model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.  相似文献   

9.
10.
Repair of DNA double strand breaks (DSBs) is influenced by the chemical complexity of the lesion. Clustered lesions (complex DSBs) are generally considered more difficult to repair and responsible for early and late cellular effects after exposure to genotoxic agents. Resection is commonly used by the cells as part of the homologous recombination (HR) pathway in S- and G2-phase. In contrast, DNA resection in G1-phase may lead to an error-prone microhomology-mediated end joining. We induced DNA lesions with a wide range of complexity by irradiation of mammalian cells with X-rays or accelerated ions of different velocity and mass. We found replication protein A (RPA) foci indicating DSB resection both in S/G2- and G1-cells, and the fraction of resection-positive cells correlates with the severity of lesion complexity throughout the cell cycle. Besides RPA, Ataxia telangiectasia and Rad3-related (ATR) was recruited to complex DSBs both in S/G2- and G1-cells. Resection of complex DSBs is driven by meiotic recombination 11 homolog A (MRE11), CTBP-interacting protein (CtIP), and exonuclease 1 (EXO1) but seems not controlled by the Ku heterodimer or by phosphorylation of H2AX. Reduced resection capacity by CtIP depletion increased cell killing and the fraction of unrepaired DSBs after exposure to densely ionizing heavy ions, but not to X-rays. We conclude that in mammalian cells resection is essential for repair of complex DSBs in all phases of the cell-cycle and targeting this process sensitizes mammalian cells to cytotoxic agents inducing clustered breaks, such as in heavy-ion cancer therapy.  相似文献   

11.
Summary B chromosomes are often considered genomic parasites. Paternal sex ratio (PSR) is an extreme example of a parasitic B chromosome in the parasitoid waspNasonia vitripennis. PSR is transmitted through the sperm of carrier males and destroys the other paternal chromosomes in early fertilized eggs. PSR disrupts the normal haplodiploid sex determination in this wasp by converting diploid (female) eggs into haploid (male) eggs that bear PSR. In this study I compare a number of phenotypic fitness aspects of PSR and standard (non-PSR) males. In general, PSR males were as fit as standard males. No significant differences were found in longevity (with one exception), ability to compete for mates and sperm depletion rates. PSR males produced 11–22% larger family sizes and developed slightly faster than standard males. Under conditions of sperm competition, females who mated with both types of males fertilized a constant proportion of eggs with each sperm type over their lifetime. PSR males produced fewer offspring among progenies from double-inseminated females. Phenotypic fitness effects are believed to play a minor role in determining PSR frequencies in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号