首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Recent studies demonstrated the ability of artificial ribonucleases (aRNases, small organic RNA cleaving compounds) to inactivate RNA-viruses via the synergetic effect of viral RNA cleavage and disruption of viral envelope [1,2]. Herein, we describe the antiviral activity of aRNases against DNA-containing vaccinia virus: screening of aRNases of various structures revealed that amphiphilic compounds built of positively charged 1,4-diazabicyclo[2.2.2] octane substituted at the bridge nitrogen atoms with aliphatic residues efficiently inactivate this virus. The first stage was the destruction of viral membrane and structure of surface proteins (electron microscopy data). Thus, 1,4-diazabicyclo[2.2.2] octane-based aRNases are novel universal agents inactivating both RNA- and DNA-containing viruses.  相似文献   

2.
The ability of artificial ribonucleases, low molecular weight compounds exhibiting RNA cleavage in vitro, to cause human cancer cell death in a concentration-dependent manner has been studied. The cytotoxic effect of artificial ribonucleases on cells appeared at rather low concentrations of these compounds (10−5 M). The study of mechanisms of the cytotoxic effect has shown that in addition to ribonuclease activity these compounds exhibit membranotropic activity. This activity allows the compounds to penetrate effectively inside cells. The cytotoxic effect of artificial ribonucleases involves damage of cell membrane, detachment of plasmalemma and impairments of its macromolecular organization. However, in the case of shortterm exposure to these compounds, cells survive even with damaged membrane.  相似文献   

3.
【目的】将TAP标签构建到WSN病毒基因组上,得到含有TAP标签的重组流感病毒,以便进行后续的病毒追踪。【方法】利用反向遗传学技术,对甲型流感病毒A/WSN/33(H1N1)的PA片段进行改造来插入TAP(tandemaffinitypurification)标签序列。通过病毒拯救得到表达外源标签TAP的重组流感病毒WSNPA-TAP,并对拯救出的重组病毒进行生物学鉴定。【结果】成功拯救出重组流感病毒并命名为WSN PA-TAP。重组病毒基因组测序表明重组病毒的序列正确,利用RNA银染技术观察到重组病毒的全基因组片段。重组流感病毒WSN PA-TAP在MDCK细胞上测定生长曲线,发现该重组病毒的复制能力比野生型WSN弱;Westernblotting检测到PA-TAP融合蛋白的表达,其分子质量为96 kDa。【结论】成功拯救出能够表达外源标签TAP的重组流感病毒WSN PA-TAP,为筛选与甲型流感病毒聚合酶有关的宿主蛋白的研究提供了新思路,同时也为以甲型流感病毒为载体携带外源基因的探索提供了重要依据。  相似文献   

4.
The nucleoprotein (NP) of influenza A virus plays a crucial role in virus replication, infectivity, and host adaptation. As a major component of the viral ribonucleoprotein complexes (vRNP), NP initiates vRNP shuttling between the nucleus and cytoplasm in the host cell. However, the characteristics of the nucleocytoplasmic shuttling of NP from H1N1 influenza A virus still remain unclear. In the present study, the subcellular localization and the related key residues of the H1N1 influenza virus NP were identified and evaluated. The NP of influenza virus A/WSN/33 (H1N1; WSN) displayed a more obvious nuclear accumulation than A/Anhui/1/2013 (H7N9; AH) and A/chicken/Shandong/lx1023/2007 (H9N2; SD). NP residue K4, located in NLS1, and residue F253, located in NES3, from WSN NP are not conserved in H7N9 and H9N2, which instead encode Q4 and I253, respectively. Crucially, these residues are involved in the regulation of NP nucleocytoplasmic shuttling through interactions with CRM1 and importin‐α. Moreover, residues at position 253 also play important roles in the replication of the virus, resulting in an increase in vRNP polymerase activity and an alteration of the cell tropism and pathogenicity in mice. The present data revealed a pivotal role of the Q4 and I253 residues of NP from H7N9 in enhancing the cytoplasmic accumulation of NP and vRNP activity compared to the K4 and F253 residues in WSN‐NP. In addition, an F253I substitution in the NP of WSN altered the survival ratio of infected mice and the growth curve in infected avian‐origin cells (DF‐1). The current data indicate that the F253I mutation results in attenuated pathogenicity of the virus in mice and altered cell tropism. The present study demonstrated the dissimilarity in subcellular NP transport processes between H1N1 virus WSN and other influenza A virus strains, as well as uncovered the mechanism responsible for this difference.  相似文献   

5.
Phenotypically mixed virus yields, obtained by coinfection of MDCK cells with influenza A/WSN/33 and B/Lee/40 viruses, contained both A/WSN/33 and B/Lee/40 NP proteins, as revealed by polyacrylamide gel electrophoresis of the purified 14C-amino acids-labeled virus. Virions were lysed with 0.6 M KCl-Triton X-100 buffer, and nucleocapsids were immunoprecipitated with antibodies against NP protein of influenza A virus. Polyacrylamide gel electrophoresis of the immunoprecipitate revealed NP protein of A/WSN/33 but not of B/Lee/40 virus. However, in similar experiments with the lysates of doubly infected cells, the band of B/Lee/40 NP protein was revealed in the polyacrylamide gel electrophoresis patterns of the immunoprecipitates. In an attempt to analyze the RNA content of the immune complexes, we absorbed the lysates of doubly infected [3H]uridine-labeled cells with protein A-containing Staphylococcus aureus covered with antibodies against the NP protein of influenza A virus. RNA extracted from the immune complexes contained genomic RNA segments of both A/WSN/33 and B/Lee/40 viruses. In control samples containing an artificial mixture of cell lysates separately infected with each virus, the analysis revealed homologous components (i.e., A/WSN/33 NP protein or RNA segments) in the immune complexes. The results suggest the presence of phenotypically mixed nucleocapsids in the cells doubly infected with influenza A and B viruses; in the course of the virion formation, the nucleocapsids lacking the heterologous NP protein are selected.  相似文献   

6.
The amantadine-sensitive ion channel activity of influenza A virus M2 protein was discovered through understanding the two steps in the virus life cycle that are inhibited by the antiviral drug amantadine: virus uncoating in endosomes and M2 protein-mediated equilibration of the intralumenal pH of the trans Golgi network. Recently it was reported that influenza virus can undergo multiple cycles of replication without M2 ion channel activity (T. Watanabe, S. Watanabe, H. Ito, H. Kida, and Y. Kawaoka, J. Virol. 75:5656-5662, 2001). An M2 protein containing a deletion in the transmembrane (TM) domain (M2-del(29-31)) has no detectable ion channel activity, yet a mutant virus was obtained containing this deletion. Watanabe and colleagues reported that the M2-del(29-31) virus replicated as efficiently as wild-type (wt) virus. We have investigated the effect of amantadine on the growth of four influenza viruses: A/WSN/33; N31S-M2WSN, a mutant in which an asparagine residue at position 31 in the M2 TM domain was replaced with a serine residue; MUd/WSN, which possesses seven RNA segments from WSN plus the RNA segment 7 derived from A/Udorn/72; and A/Udorn/72. N31S-M2WSN was amantadine sensitive, whereas A/WSN/33 was amantadine resistant, indicating that the M2 residue N31 is the sole determinant of resistance of A/WSN/33 to amantadine. The growth of influenza viruses inhibited by amantadine was compared to the growth of an M2-del(29-31) virus. We found that the M2-del(29-31) virus was debilitated in growth to an extent similar to that of influenza virus grown in the presence of amantadine. Furthermore, in a test of biological fitness, it was found that wt virus almost completely outgrew M2-del(29-31) virus in 4 days after cocultivation of a 100:1 ratio of M2-del(29-31) virus to wt virus, respectively. We conclude that the M2 ion channel protein, which is conserved in all known strains of influenza virus, evolved its function because it contributes to the efficient replication of the virus in a single cycle.  相似文献   

7.
A trypsin inhibitor, 6-amidino-2-naphthyl p-guanidinobenzoate (FUTHAN) reduced both the number and size of plaques of influenza virus A/WSN/33 (H1N1) that can grow without trypsin treatment in MDCK cells. The resulting virus particles with uncleaved hemagglutinin (HA) in the presence of FUTHAN was activated to produce infectious virions by trypsin treatment. Uncleaved HA of WSN virus grown in the presence of FUTHAN was found to be accumulated by protein analysis of WSN virus labeled biosynthetically with [35S]-methionine. It was strongly suggested that FUTHAN inhibited viral replication by preventing proteolytic cleavage of HA.  相似文献   

8.
A number of tetracationic compounds capable of phosphodiester bond cleavage within a 21-membered ribooligonucleotide were designed and synthesized. The artificial ribonucleases represent two residues of quaternized 1,4-diazabicyclo[2.2.2]octane bearing alkyl substituents of various lengths and connected with a rigid linker. The efficiency of cleavage of phosphodiester bonds in an RNA target depends on the linker structure and the length of alkyl substituent.  相似文献   

9.
10.
Artificial ribonucleases, conjugates of short oligodeoxyribonucleotides and peptides built of arginine, leucine, proline, and serine, were synthesized and assessed in terms of ribonuclease activity and specificity of RNA cleavage. A specific group of the conjugates was identified that display T1-ribonuclease-like activity and cleave RNA predominantly at G-X sequences. Circular dichroism study of the structures of the most active conjugates, free peptide (LR)4G, and oligonucleotides revealed that conjugation of oligonucleotide to the peptide results in a specific peptide folding that possibly provides ribonuclease activity to the conjugate.  相似文献   

11.
用8质粒病毒拯救系统产生H9N2/WSN重组A型流行性感冒病毒   总被引:9,自引:0,他引:9  
把禽流行性感冒(流感)病毒A/Chicken/Shanghai/F/98(H9N2)的血凝素(HA)和神经氨酸酶(NA)基因cDNA克隆至polⅠ-pol Ⅱ双向转录和表达载体pHW2000,用这两种质粒与8质粒病毒拯救系统中流感病毒A/WSN/33(H1N1)6个内部基因cDNA的质粒组合(6 2重排),共转染COS-1细胞,产生了能在鸡胚中高滴度增殖的H9N2/、WSN重组病毒。用A/WSN/33的8个基因cDNA质粒作对照,也产生了转染子病毒。经过EID50测定和MDCK感染实验,新基因型H9N2/WSN病毒感染鸡胚的能力强(EID50为10^-11/0.2m1),而且对鸡胚的毒力弱,在不加胰酶的情况下不使MDCK细胞产牛病变。经电镜观察,两个转染子病毒的形态与野生型流感病毒相似。反向遗传操作技术的建立,为对禽流感病毒基因功能和疫苗构建等方面的研究提供了新的手段。  相似文献   

12.
RNase T1 mimicking artificial ribonuclease   总被引:1,自引:0,他引:1       下载免费PDF全文
Recently, artificial ribonucleases (aRNases)—conjugates of oligodeoxyribonucleotides and peptide (LR)4-G-amide—were designed and assessed in terms of the activity and specificity of RNA cleavage. The conjugates were shown to cleave RNA at Pyr-A and G–X sequences. Variations of oligonucleotide length and sequence, peptide and linker structure led to the development of conjugates exhibiting G–X cleavage specificity only. The most efficient catalyst is built of nonadeoxyribonucleotide of unique sequence and peptide (LR)4-G-NH2 connected by the linker of three abasic deoxyribonucleotides (conjugate pep-9). Investigation of the cleavage specificity of conjugate pep-9 showed that the compound is the first single-stranded guanine-specific aRNase, which mimics RNase T1. Rate enhancement of RNA cleavage at G–X linkages catalysed by pep-9 is 108 compared to non-catalysed reaction, pep-9 cleaves these linkages only 105-fold less efficiently than RNase T1 (kcat_RNase T1/kcat_pep-9 = 105).  相似文献   

13.
Abstract

Artificial ribonucleases, conjugates of short oligodeoxyribonucleotides and peptides built of arginine, leucine, proline, and serine, were synthesized and assessed in terms of ribonuclease activity and specificity of RNA cleavage. A specific group of the conjugates was identified that display T1-ribonuclease-like activity and cleave RNA predominantly at G-X sequences. Circular dichroism study of the structures of the most active conjugates, free peptide (LR)4G, and oligonucleotides revealed that conjugation of oligonucleotide to the peptide results in a specific peptide folding that possibly provides ribonuclease activity to the conjugate.  相似文献   

14.
Goto H 《Uirusu》2004,54(1):83-91
Because cleavage of the hemagglutinin (HA) molecule by proteases is a prerequisite for infectivity of influenza A viruses, this molecule is a major determinant of viral pathogenicity. Although well documented in the pathogenicity of avian influenza viruses, the role of HA cleavage in the pathogenicity of mammalian viruses is not well understood. Therefore, we studied a mouse-adapted human isolate A/WSN/33 (WSN), a neurovirulent influenza virus strain that causes systemic infection when inoculated intranasally into mice. We found a novel mechanism of HA cleavage for WSN virus: the neuraminidase (NA) of WSN virus binds and sequesters plasminogen on the cell surface, leading to enhanced cleavage of the HA. The structural basis of this novel function of the NA molecule appears to be the presence of a carboxyl-terminal lysine and the absence of an oligosaccharide side chain at position 146. To obtain direct evidence that the plasminogen-binding activity of the NA enhances the pathogenicity of WSN virus, we generated mutant viruses that are deficient in plasminogen-binding activity by reverse genetics. The mutant viruses showed attenuated growth in mice and failed to grow at all in the brains of these animals. Therefore, we concluded that the novel function of plasminogen-binding activity of the NA determines the pathogenicity of WSN virus in mice.  相似文献   

15.
Viral entry inhibitors are of great importance in current efforts to develop a new generation of anti-influenza drugs. Inspired by the discovery of a series of pentacyclic triterpene derivatives as entry inhibitors targeting the HA protein of influenza virus, we designed and synthesized 32 oleanolic acid (OA) analogues in this study by conjugating different amino acids to the 28-COOH of OA. The antiviral activity of these compounds was evaluated in vitro. Some of these compounds revealed impressive anti-influenza potencies against influenza A/WSN/33 (H1N1) virus. Among them, compound 15a exhibited robust potency and broad antiviral spectrum with IC50 values at the low-micromolar level against four different influenza strains. Hemagglutination inhibition (HI) assay and docking experiment indicated that these OA analogues may act in the same way as their parent compound by interrupting the interaction between HA protein of influenza virus and the host cell sialic acid receptor via binding to HA, thus blocking viral entry.  相似文献   

16.
The effect of the total positive charge in the RNA-binding domain of chemical ribonucleases that are conjugates of bisquaternary salts of diazabicyclo[2.2.2]octane and imidazol on the cleavage of an HIV-1 RNA fragment was studied. An increase in the positive charge from +2 to +4 was shown to result in a significant growth in the ribonuclease activity. Possible mechanisms of the interactions between structural moieties of chemical ribonucleases and RNA that enable an effective catalysis of the cleavage of phosphodiester bonds are discussed.  相似文献   

17.
Studies were conducted on the stimulatory effect that various nucleic-acid-binding compounds have on the hydrolysis of RNA and polyribonucleotides by pancreatic ribonuclease A and by other ribonucleases. The stimulatory activity of chloroquine on tRNA hydrolysis by pancreatic ribonuclease was due to the formation of oligonucleotides of a wide range of sizes and was not due to the formation of very short ( n greater than 5) oligonucleotide fragments of tRNA. The dextrorotatory and levorotatory isomers of chloroquine did not differ in their ability to stimulate the hydrolysis of tRNA by pancreatic ribonuclease A. In addition to chloroquine and primaquine, other nucleic-acid-binding compounds (e.g., quinacrine, lucanthone, and proflavin) stimulated the hydrolysis of tRNA by pancreatic ribonuclease A. Chloroquine did not alter the rate of hydrolysis by pancreatic ribonuclease A of low-molecular-weight substrates (cytidine cyclic 2':o'-monophosphate, uridine cyclic 2':3'-monophosphate, cytidylyl-adenosine, or uridylyl-uridine). Furthermore, chloroquine and primaquine did not affect the hydrolysis of poly(A) by high concentrations of pancreatic ribonuclease A. In studies on the hydrolysis of tRNA by other endoribonucleases, several of the nucleic-acid-binding compounds (e.g., quinacrine and ethidium) exhibited appreciable inhibition of both ribonuclease N1 and ribonuclease T1. None of the compounds tested stimulated the activity of ribonuclease T1, and only chloroquine, and perhaps lucanthone, stimulated the hydrolysis of tRNA by ribonuclease N1.  相似文献   

18.
The effect of the total positive charge in the RNA-binding domain of chemical ribonucleases that are conjugates of bisquaternary salts of 1,4-diazabicylo[2.2.2]octane and imidazole on the cleavage of an HIV-1 RNA fragment was studied. An increase in the positive charge from +2 to +4 was shown to result in a significant growth in the ribonuclease activity. Possible mechanisms of the interactions between structural moieties of chemical ribonucleases and RNA that enable an effective catalysis of the cleavage of phosphodiester bonds are discussed.  相似文献   

19.
ABSTRACT: BACKGROUND: Although gene exchange is not likely to occur freely, reassortment between the H5N1 highlypathogenic avian influenza virus (HPAIV) and currently circulating human viruses is aserious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported toactivate the influenza replicon activity. METHODS: The replicon activities of PR8 and WSN strains (H1N1) of influenza containing PA fromHPAIV A/Cambodia/P0322095/2005 (H5N1) and the activity of the chimeric RNApolymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (CPA)was then reconstituted and its growth in cells and pathogenicity in mice examined. Theinterferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells werecompared with those of WSN-infected cells. RESULTS: The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and CPAreplicated better than WSN in cells. However, the multi-step growth of C-PA and itspathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, andcaspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cellsbut not in WSN-infected cells. CONCLUSIONS: Apoptosis and interferon were strongly induced early in C-PA infection, which protected theuninfected cells from expansion of viral infection. In this case, these classical host-virusinteractions contributed to the attenuation of this strongly replicating virus.  相似文献   

20.
Johnson RJ  Lin SR  Raines RT 《The FEBS journal》2006,273(23):5457-5465
Translating proteases as inactive precursors, or zymogens, protects cells from the potentially lethal action of unregulated proteolytic activity. Here, we impose this strategy on bovine pancreatic ribonuclease (RNase A) by creating a zymogen in which quiescent ribonucleolytic activity is activated by the NS3 protease of the hepatitis C virus. Connecting the N-terminus and C-terminus of RNase A with a 14-residue linker was found to diminish its ribonucleolytic activity by both occluding an RNA substrate and dislocating active-site residues, which are devices used by natural zymogens. After cleavage of the linker by the NS3 protease, the ribonucleolytic activity of the RNase A zymogen increased 105-fold. Both before and after activation, the RNase A zymogen displayed high conformational stability and evasion of the endogenous ribonuclease inhibitor protein of the mammalian cytosol. Thus, the creation of ribonuclease zymogens provides a means to control ribonucleolytic activity and has the potential to provide a new class of antiviral chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号