首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The targeting of the tumor suppressor PTEN protein to distinct subcellular compartments is a major regulatory mechanism of PTEN function, by controlling its access to substrates and effector proteins. Here, we investigated the molecular basis and functional consequences of PTEN nuclear/cytoplasmic distribution. PTEN accumulated in the nucleus of cells treated with apoptotic stimuli. Nuclear accumulation of PTEN was enhanced by mutations targeting motifs in distinct PTEN domains, and it was dependent on an N-terminal nuclear localization domain. Coexpression of a dominant negative Ran GTPase protein blocked PTEN accumulation in the nucleus, which was also affected by coexpression of importin alpha proteins. The lipid- and protein-phosphatase activity of PTEN differentially modulated PTEN nuclear accumulation. Furthermore, catalytically active nuclear PTEN enhanced cell apoptotic responses. Our findings indicate that multiple nuclear exclusion motifs and a nuclear localization domain control PTEN nuclear localization by a Ran-dependent mechanism and suggest a proapoptotic role for PTEN in the cell nucleus.  相似文献   

2.
The tumor suppressor activity of p27Kip1 takes place in the cell nucleus by inhibitory binding to cyclin/CDK complexes. p27Kip1 can also be localized in the cytoplasm, where it has been proposed to have oncogenic properties. Here, we describe a novel role for cytoplasmic p27Kip1 which could account for its activity as an oncoprotein by negative regulation of the PTEN tumor suppressor. p27Kip1 physically interacted with the open conformation of PTEN, which is competent to enter the nucleus. In mammalian cells, cytoplasmic p27Kip1 retained to nuclear-targeted PTEN in the cytoplasm. This retention was exerted by the C-terminal p27Kip1 region, and was independent of cyclin/CDK-binding. The nuclear accumulation of PTEN triggered by pro-apoptotic TNFα treatment was abolished by cytoplasmic p27Kip1. Furthermore, conformationally-open PTEN displayed diminished protein stability and pro-apoptotic activity in the presence of cytoplasmic p27Kip1. Our results support a conformationally-dependent model of cytoplasmic retention and negative regulation of the activity of nuclear PTEN by oncogenic cytoplasmic p27Kip1, and suggest the existence of reciprocal mechanisms to regulate the levels of both p27Kip1 and PTEN.  相似文献   

3.
PTEN, a tumor suppressor that is frequently mutated in a wide spectrum of cancers, exerts PI(3,4,5)P3 phosphatase activities that are regulated by its dynamic shuttling between the membrane and cytoplasm. Direct observation of PTEN in the interfacial environment can offer quantitative information about the shuttling dynamics, but remains elusive. Here we show that positively charged residues located in the cα2 helix of the C2 domain are necessary for the membrane localization of PTEN via stable electrostatic interactions in Dictyostelium discoideum. Single-molecule imaging analyses revealed that PTEN molecules moved distances much larger than expected had they been caused by lateral diffusion, a phenomenon we call “hopping.” Our novel single-particle tracking analysis method found that the cα2 helix aids in regulating the hopping and stable-binding states. The dynamically established membrane localization of PTEN was revealed to be essential for developmental processes and clarified a fundamental regulation mechanism of the protein quantity and activity on the plasma membrane.  相似文献   

4.
PTEN, one the most frequently mutated genes in human cancer, acts as a tumor suppressor by dephosphorylating the plasma membrane lipid second messenger phosphoinositide-3,4,5-trisphosphate (PIP3) generated by the action of PI3Kinases. PTEN activity to prevent elevated levels of PIP3 and tumorigenesis depends on its interaction with the lipid bilayer. PTEN binds dynamically to the plasma membrane through a complex mix of protein-lipid and protein-protein interactions and the translocation is regulated by several mechanisms including C-terminal tail phosphorylations. Here we have summarized our current view of the interaction of PTEN with the plasma membrane and what the implications are for cancer biology.  相似文献   

5.
The tumor suppressor, phosphatase, and tensin homologue deleted on chromosome 10 (PTEN), is a phosphoinositide (PI) phosphatase specific for the 3‐position of the inositol ring. PTEN has been implicated in autism for a subset of patients with macrocephaly. Various studies identified patients in this subclass with one normal and one mutated PTEN gene. We characterize the binding, structural properties, activity, and subcellular localization of one of these autism‐related mutants, H93R PTEN. Even though this mutation is located at the phosphatase active site, we find that it affects the functions of neighboring domains. H93R PTEN binding to phosphatidylserine‐bearing model membranes is 5.6‐fold enhanced in comparison to wild‐type PTEN. In contrast, we find that binding to phosphatidylinositol‐4,5‐bisphosphate (PI(4,5)P2) model membranes is 2.5‐fold decreased for the mutant PTEN in comparison to wild‐type PTEN. The structural change previously found for wild‐type PTEN upon interaction with PI(4,5)P2, is absent for H93R PTEN. Consistent with the increased binding to phosphatidylserine, we find enhanced plasma membrane association of PTEN‐GFP in U87MG cells. However, this enhanced plasma membrane association does not translate into increased PI(3,4,5)P3 turnover, since in vivo studies show a reduced activity of the H93R PTEN‐GFP mutant. Because the interaction of PI(4,5)P2 with PTEN's N‐terminal domain is diminished by this mutation, we hypothesize that the interaction of PTEN's N‐terminal domain with the phosphatase domain is impacted by the H93R mutation, preventing PI(4,5)P2 from inducing the conformational change that activates phosphatase activity.  相似文献   

6.
7.
The tumor suppressor gene PTEN is a phosphoinositide phosphatase that is inactivated by deletion and/or mutation in diverse human tumors. Wild-type PTEN is expressed both in the cytoplasm and nucleus in normal cells, with a preferential nuclear localization in differentiated or resting cells. To elucidate the relationship between PTEN's subcellular localization and its biologic activities, we constructed different PTEN mutants that targeted PTEN protein into different subcellular compartments. Our data show that the subcellular localization patterns of a PTEN (deltaPDZB) mutant versus a G129R phosphatase mutant were indistinguishable from those of wild-type PTEN. In contrast, the Myr-PTEN mutant demonstrated an enhanced association with the cell membrane. We found that nuclear PTEN alone is capable of suppressing anchorage-independent growth and facilitating G1 arrest in U251MG cells without inhibiting Akt activity. Nuclear compartment-specific PTEN-induced growth suppression is dependent on possessing a functional lipid phosphatase domain. In addition, the down-regulation of p70S6K could be mediated, at least in part, through activation of AMP-activated protein kinase in an Akt-independent fashion. Introduction of a constitutively active mutant of Akt, Akt-DD, only partially rescues nuclear PTEN-mediated growth suppression. Our collective results provide the first direct evidence that PTEN can contribute to G1 growth arrest through an Akt-independent signaling pathway.  相似文献   

8.
PTEN is one of the most frequently altered tumor suppressor genes in malignant tumors. The dominant-negative effect of PTEN alteration suggests that the aberrant function of PTEN mutation might be more disastrous than deletion, the most frequent genomic event in glioblastoma (GBM). This study aimed to understand the functional properties of various PTEN missense mutations and to investigate their clinical relevance. The genomic landscape of PTEN alteration was analyzed using the Samsung Medical Center GBM cohort and validated via The Cancer Genome Atlas dataset. Several hotspot mutations were identified, and their subcellular distributions and phenotypes were evaluated. We established a library of cancer cell lines that overexpress these mutant proteins using the U87MG and patient-derived cell models lacking functional PTEN. PTEN mutations were categorized into two major subsets: missense mutations in the phosphatase domain and truncal mutations in the C2 domain. We determined the subcellular compartmentalization of four mutant proteins (H93Y, C124S, R130Q, and R173C) from the former group and found that they had distinct localizations; those associated with invasive phenotypes (‘edge mutations’) localized to the cell periphery, while the R173C mutant localized to the nucleus. Invasive phenotypes derived from edge substitutions were unaffected by an anti-PI3K/Akt agent but were disrupted by microtubule inhibitors. PTEN mutations exhibit distinct functional properties regarding their subcellular localization. Further, some missense mutations (‘edge mutations’) in the phosphatase domain caused enhanced invasiveness associated with dysfunctional cytoskeletal assembly, thus suggesting it to be a potent therapeutic target.Subject terms: Cancer, Oncogenes  相似文献   

9.
The PTEN tumor suppressor is a lipid phosphatase that has a central role in regulating the phosphatidylinositol-3-kinase (PI3K) signal transduction cascade. Nevertheless, the mechanism by which the PTEN activity is regulated in cells needs further elucidation. Although previous studies have shown that ubiquitination of PTEN can modulate its stability and subcellular localization, the role of ubiquitination in the most critical aspect of PTEN function, its phosphatase activity, has not been fully addressed. Here, we identify a novel E3 ubiquitin ligase of PTEN, Ret finger protein (RFP), that is able to promote atypical polyubiquitinations of PTEN. These ubiquitinations do not lead to PTEN instability or relocalization, but rather significantly inhibit PTEN phosphatase activity and therefore modulate its ability to regulate the PI3K signal transduction cascade. Indeed, RFP overexpression relieves PTEN-mediated inhibitory effects on AKT activation; in contrast, RNAi-mediated knockdown of endogenous RFP enhances the ability of PTEN to suppress AKT activation. Moreover, RFP-mediated ubiquitination of PTEN inhibits PTEN-dependent activation of TRAIL expression and also suppresses its ability to induce apoptosis. Our findings demonstrate a crucial role of RFP-mediated ubiquitination in controlling PTEN activity.  相似文献   

10.
PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a tumor suppressor that is mutated or deleted in a variety of human tumors, and even loss of only one PTEN gene profoundly affects carcinogenesis. PTEN encodes a phosphatidylinositol phosphate phosphatase specific for the 3-position of the inositol ring. Despite its importance, we are just beginning to understand the regulatory circuits that maintain the correct levels of PTEN phosphatase activity. Several independent studies reported that PI(4,5)P2 enhances PTEN phosphatase activity, but the reasons for this enhancement are currently being debated. In this study, PTEN bound to PI(4,5)P2-bearing vesicles has increased alpha-helicity, providing direct spectroscopic proof of a conformational change. Neither PI(3,5)P2 nor PI(3,4,5)P3 induced this conformational change. On the basis of experiments with two mutant PTEN proteins, it is shown that PI(4,5)P2 induces this conformational change by binding to the PTEN N-terminal domain. Using PTEN protein and a 21-amino acid peptide based on the PTEN N-terminus, we tested all natural phosphatidylinositol phosphates and found preferential binding of PI(4,5)P2. PTEN also binds to phosphatidylserine-bearing vesicles, resulting in a slight increase in beta-sheet content. In addition, PTEN binds synergistically to PI(4,5)P2 and phosphatidylserine, and hence, these anionic lipids do not compete for PTEN binding sites. Collectively, these results demonstrate that PTEN binds to membranes through multiple sites, but only PI(4,5)P2 binding to the N-terminal domain triggers a conformational change with increased alpha-helicity.  相似文献   

11.
Ubiquitination regulates PTEN nuclear import and tumor suppression   总被引:12,自引:0,他引:12  
The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.  相似文献   

12.
Missense PTEN mutations of the active site residues Asp-92, Cys-124 and Gly-129 contribute to Cowden syndrome. How their mutations affect phospholipid phosphatase activity and tumor suppressor function of PTEN has been defined. In this study, we investigated how their mutations affect the kinetics and catalytic mechanism of PTEN phosphoprotein phosphatase activity. Our data suggest that PTEN catalysis of phosphoprotein dephosphorylation follows a two-step mechanism with Cys-124 transiently phosphorylated to form the phosphoenzyme intermediate. In spite of this, we were unable to trap the genuine phosphoenzyme intermediate; instead, we unexpectedly discovered a novel phosphotransfer reaction in which the phosphate group is transferred from a tyrosyl phosphopeptide to PTEN to form a unique phosphorylated protein. Even though the finding is novel, the phosphotransfer reaction is likely an in vitro non-enzymatic reaction. Kinetic analysis revealed that mutation of Asp-92 has negligible impacts on phosphopeptide phosphatase activity of PTEN, suggesting that Asp-92 does not participate in the phosphopeptide dephosphorylation reaction. The results also imply that allosteric regulators facilitating the recruitment of Asp-92 to participate in catalysis will increase the activity of PTEN in dephosphorylating phosphoprotein and phosphopeptide substrates. Furthermore, kinetic analysis revealed that the G129E mutation has different effects on phospholipid and phosphoprotein phosphatase activities. Taken together, the data show that while the two phosphatase activities of PTEN follow a similar catalytic mechanism, they have notable differences in the requirements of the active site structure.  相似文献   

13.
The tumor suppressive function of PTEN is exerted within 2 different cellular compartments. In the cytosol-membrane, it negatively regulates PI3K-AKT pathway through the de-phosphorylation of phosphatidylinositol (3,4,5)-triphosphate (PIP3), therefore blocking one of the major signaling transduction pathways in tumorigenesis. In the nucleus, PTEN controls genomic stability and cellular proliferation through phosphatase independent mechanisms. Importantly, impairments in PTEN cellular compartmentalization, changes in protein levels and post-transductional modifications affect PTEN tumor suppressive functions. Targeting mechanisms that inactivate PTEN promotes apoptosis induction of cancer cells, without affecting normal cells, with appealing therapeutic implications. Recently, we have shown that BCR-ABL promotes PTEN nuclear exclusion by favoring HAUSP mediated PTEN de-ubiquitination in Chronic Myeloid Leukemia. Here, we show that nuclear exclusion of PTEN is associated with PTEN inactivation in the cytoplasm of CML cells. In particular, BCR-ABL promotes Casein Kinase II-mediated PTEN tail phosphorylation with consequent inhibition of the phosphatase activity toward PIP3. Targeting Casein Kinase II promotes PTEN reactivation with apoptosis induction. We therefore propose a novel BCR-ABL/CKII/PTEN pathway as a potential target to achieve synthetic lethality with tyrosine kinase inhibitors.  相似文献   

14.
Despite much evidence for phosphatidylinositol phosphate (PIP)-triggered signaling pathways in the nucleus, there is little understanding of how the levels and activities of these proteins are regulated. As a first step to elucidating this problem, we determined whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) enters the nucleus by passive diffusion or active transport. We expressed various PTEN fusion proteins in tsBN2, HeLa, LNCaP, and U87MG cells and determined that the largest PTEN fusion proteins showed little or no nuclear localization. Because diffusion through nuclear pores is limited to proteins of 60,000 Da or less, this suggests that nuclear translocation of PTEN occurs via diffusion. We examined PTEN mutants, seeking to identify a nuclear localization signal (NLS) for PTEN. Mutation of K13 and R14 decreased nuclear localization, but these amino acids do not appear to be part of an NLS. We used fluorescence recovery after photobleaching (FRAP) to demonstrate that GFP-PTEN can passively pass through nuclear pores. Diffusion in the cytoplasm is retarded for the PTEN mutants that show reduced nuclear localization. We conclude that PTEN enters the nucleus by diffusion. In addition, sequestration of PTEN in the cytoplasm likely limits PTEN nuclear translocation.  相似文献   

15.
PTEN (phosphatase and tensin homolog), a tumor suppressor frequently mutated in human cancer, has various cytoplasmic and nuclear functions. PTEN translocates to the nucleus from the cytoplasm in response to oxidative stress. However, the mechanism and function of the translocation are not completely understood. In this study, topotecan (TPT), a topoisomerase I inhibitor, and cisplatin (CDDP) were employed to induce DNA damage. The results indicate that TPT or CDDP activates ATM (ATM serine/threonine kinase), which phosphorylates PTEN at serine 113 and further regulates PTEN nuclear translocation in A549 and HeLa cells. After nuclear translocation, PTEN induces autophagy, in association with the activation of the p-JUN-SESN2/AMPK pathway, in response to TPT. These results identify PTEN phosphorylation by ATM as essential for PTEN nuclear translocation and the subsequent induction of autophagy in response to DNA damage.  相似文献   

16.
Vulval development in Caenorhabditis elegans serves as an excellent model to examine the crosstalk between different conserved signaling pathways that are deregulated in human cancer. The concerted action of the RAS/MAPK, NOTCH, and WNT pathways determines an invariant pattern of cell fates in three vulval precursor cells. We have discovered a novel form of crosstalk between components of the Insulin and the RAS/MAPK pathways. The insulin receptor DAF-2 stimulates, while DAF-18 PTEN inhibits, RAS/MAPK signaling in the vulval precursor cells. Surprisingly, the inhibitory activity of DAF-18 PTEN on the RAS/MAPK pathway is partially independent of its PIP(3) lipid phosphatase activity and does not involve further downstream components of the insulin pathway, such as AKT and DAF-16 FOXO. Genetic and biochemical analyses indicate that DAF-18 negatively regulates vulval induction by inhibiting MAPK activation. Thus, mutations in the PTEN tumor suppressor gene may result in the simultaneous hyper-activation of two oncogenic signaling pathways.  相似文献   

17.
Two major mechanisms of intracellular protein degradation, autophagy and the ubiquitin-proteasome pathway, operate in mammalian cells. PTEN, which is frequently mutated in glioblastomas, is a tumor suppressor gene that encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase class I/AKT/mTOR pathway, which is a key regulator of autophagy. Here, we investigated in U87MG human glioma cells the role of PTEN in the regulation of autophagy and the ubiquitin-proteasome pathway, because both are functionally linked and are relevant in cancer progression. Since U87MG glioma cells lack a functional PTEN, we used stable clones that express, under the control of a tetracycline-inducible system (Tet-on), wild-type PTEN and two of its mutants, G129E-PTEN and C124S-PTEN, which, respectively, lack the lipid phosphatase activity only and both the lipid and the protein phosphatase activities of this protein. Expression of PTEN in U87MG glioma cells decreased proteasome activity and also reduced protein ubiquitination. On the contrary, expression of PTEN increased the autophagic flux and the lysosomal mass. Interestingly, and although PTEN negatively regulates the phosphatidylinositol 3-kinase class I/AKT/mTOR signaling pathway by its lipid phosphatase activity, both effects in U87MG cells were independent of this activity. These results suggest a new mTOR-independent signaling pathway by which PTEN can regulate in opposite directions the main mechanisms of intracellular protein degradation.  相似文献   

18.
19.
The crucial function of the PTEN tumor suppressor in multiple cellular processes suggests that its activity must be tightly controlled. Both, membrane association and a variety of post-translational modifications, such as acetylation, phosphorylation, and mono- and polyubiquitination, have been reported to regulate PTEN activity. Here, we demonstrated that PTEN is also post-translationally modified by the small ubiquitin-like proteins, small ubiquitin-related modifier 1 (SUMO1) and SUMO2. We identified lysine residue 266 and the major monoubiquitination site 289, both located within the C2 domain required for PTEN membrane association, as SUMO acceptors in PTEN. We demonstrated the existence of a crosstalk between PTEN SUMOylation and ubiquitination, with PTEN-SUMO1 showing a reduced capacity to form covalent interactions with monoubiquitin and accumulation of PTEN-SUMO2 conjugates after inhibition of the proteasome. Moreover, we found that virus infection induces PTEN SUMOylation and favors PTEN localization at the cell membrane. Finally, we demonstrated that SUMOylation contributes to the control of virus infection by PTEN.  相似文献   

20.
PTEN, mutated in a variety of human cancers, is a dual specificity protein phosphatase and also possesses D3-phosphoinositide phosphatase activity on phosphatidylinositol 3,4,5-tris-phosphate (PIP(3)), a product of phosphatidylinositol 3-kinase. This PIP(3) phosphatase activity of PTEN contributes to its tumor suppressor function by inhibition of Akt kinase, a direct target of PIP(3). We have recently shown that Akt regulates PDGF-induced DNA synthesis in mesangial cells. In this study, we demonstrate that expression of PTEN in mesangial cells inhibits PDGF-induced Akt activation leading to reduction in PDGF-induced DNA synthesis. As a potential mechanism, we show that PTEN inhibits PDGF-induced protein tyrosine phosphorylation with concomitant dephosphorylation and inactivation of tyrosine phosphorylated and activated PDGF receptor. Recombinant as well as immunopurified PTEN dephosphorylates autophosphorylated PDGF receptor in vitro. Expression of phosphatase deficient mutant of PTEN does not dephosphorylate PDGF-induced tyrosine phosphorylated PDGF receptor. Rather its expression increases tyrosine phosphorylation of PDGF receptor. Furthermore, expression of PTEN attenuated PDGF-induced signal transduction including phosphatidylinositol 3-kinase and Erk1/2 MAPK activities. Our data provide the first evidence that PTEN is physically associated with platelet-derived growth factor (PDGF) receptor and that PDGF causes its dissociation from the receptor. Finally, we show that both the C2 and tail domains of PTEN contribute to binding to the PDGF receptor. These data demonstrate a novel aspect of PTEN function where it acts as an effector for the PDGF receptor function and negatively regulates PDGF receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号