首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Conservation of rare and endangered species requires assessment of factors that influence the current habitat associations of a species and the role of past habitat degradation in limiting occupancy or abundance. The objective of our 2011–2014 study was to determine how habitat characteristics and wetland history can predict occupancy and abundance patterns of bog turtles (Glyptemys muhlenbergii) at the fringe of their range in the southeastern United States. We used a hurdle model to examine occupancy and abundance patterns while addressing problems associated with zero-inflated data. Occupancy patterns were weakly related to percent of the wetland containing emergent vegetation, whereas abundance patterns were predicted by the percent silt in the wetland substrate, percent forest cover, amount of habitat degradation, and recovery time since past habitat degradation. The effect of historical habitat degradation on abundance rather than occupancy patterns has rarely been documented and its effect is rarely studied in vertebrate populations. Identification of predictors of occupancy and abundance patterns will aid discovery of new populations of bog turtles and improve management of occupied wetlands. © 2019 The Wildlife Society.  相似文献   

2.
In this study, we sought to determine the population stability and genetic diversity of one isolated population of the federally-threatened bog turtle (Glyptemys muhlenbergii) in North Carolina. Using capture–recapture data, we estimated adult survival and population growth rate from 1992 to 2007. We found that the population decreased from an estimated 36 adult turtles in 1994 to approximately 11 adult turtles in 2007. We found a constant adult survival of 0.893 (SE = 0.018, 95% confidence interval, 0.853–0.924) between 1992 and 2007. Using 18 microsatellite markers, we compared the genetic status of this population with five other bog turtle populations. The target population displayed allelic richness (4.8 ± 0.5) and observed heterozygosity (0.619 ± 0.064) within the range of the other bog turtle populations. Coalescent analysis of population growth rate, effective population size, and timing of population structuring event also indicated the genetics of the target population were comparable to the other populations studied. Estimates of effective population size were a proportion of the census size in all populations except the target population, in which the effective population size was larger than the census size (30 turtles vs. 11 turtles). We attribute the high genetic diversity in the target population to the presence of multiple generations of old turtles. This study illustrates that the demographic status of populations of long-lived species may not be reflected genetically if a decline occurred recently. Consequently, the genetic integrity of populations of long-lived animals experiencing rapid demographic bottlenecks may be preserved through conservation efforts effective in addressing demographic problems.  相似文献   

3.
In an aquatic thermal gradient of 15–30 °C, 3-, 6-, and 12-month-old juvenile wood turtles (Glyptemys insculpta) acclimated to 20 °C selected the warmest temperature available (30 °C) and avoided the coldest temperatures available (15 and 18 °C). Mean selection of chambers differed between control and gradient tests across all temperatures except 27 °C. Turtles of all age classes relocated between chambers less often when the gradient was present than during control tests. Six- and 12-month-old turtles selected 30 °C more frequently, and selected colder temperatures less frequently, than 3-month-old turtles, suggesting that the ability to select preferred temperatures is better developed in older hatchlings.  相似文献   

4.
We used mitochondrial DNA sequence comparisons to assess range-wide population structure and historical patterns of differentiation among populations of the bog turtle (Glyptemys muhlenbergii). This species is one of North America’s smallest and most endangered pond turtles, and is currently found in three largely disjunct groups of populations: in the southern U.S., in the northeast, and in the Finger Lakes and Lake Ontario Plains region of western and central New York State. All the New York sites and most of the northeastern sites were glaciated during the Pleistocene. We surveyed 2793 bases pairs of mitochondrial DNA spanning three genes (cytb, nd4, and d-loop) in 41 individuals from 21 populations throughout most of the bog turtle’s distribution. We found surprisingly low levels of divergence among populations, even in southern populations that have been hypothesized as refugia during times of climate change. Our data suggest populations of bog turtle’s suffered a bottleneck, followed by a rapid post-Pleistocene expansion into northern segments of the species’ range. We discuss historical changes in habitat availability and climate that may have influenced the historical deployment of lineages in this species, and possible life history traits and habitat dynamics that might also contribute to the overall low genetic diversity across its range.  相似文献   

5.
Some members of the gamma herpesvirus genus Macavirus are maintained in nature as subclinical infections in well-adapted ungulate hosts. Transmission of these viruses to poorly adapted hosts, such as American bison and cattle, can result in the frequently fatal disease malignant catarrhal fever (MCF). Based on phylogenetic analysis, the MCF viruses (MCFV) cluster into two subgroups corresponding to the reservoir hosts’ subfamilies: Alcelaphinae/Hippotraginae and Caprinae. Antibody cross-reactivity among MCFVs has been demonstrated using techniques such as enzyme linked immunosorbent and immunofluorescence assays. However, minimal information is available as to whether virus neutralizing antibodies generated against one MCFV cross react with other members of the genus. This study tested the neutralizing activity of serum and plasma from select MCFV-infected reservoir hosts against alcelaphine herpesvirus 1 (AlHV-1) and ovine herpesvirus 2 (OvHV-2). Neutralizing antibody activity against AlHV-1 was detected in samples from infected hosts in the Alcelaphinae and Hippotraginae subfamilies, but not from hosts in the Caprinae subfamily. OvHV-2 neutralizing activity was demonstrated in samples from goats (Caprinae) but not from wildebeest (Alcelaphinae). These results show that neutralizing antibody cross reactivity is present to MCFVs within a virus subgroup but not between subgroups. This information is important for diagnosing infection with MCFVs and in the development of vaccines against MCF.  相似文献   

6.
We investigated the phylogeography of wood turtles, Glyptemys insculpta, in North America using 750 bp of the mitochondrial control region from 117 individuals sampled at 29 localities across the species' range. A total of 21 haplotypes were identified and little genetic variation was found. The highest pairwise difference was 2%. From nested clade analysis (NCA), one main postglacial dispersal route was inferred along the east coast, with subsequent westward dispersal. NCA further revealed some patterns of restricted gene flow/dispersal. We propose that wood turtles experienced a combined effect of bottleneck during the Pleistocene as well as of selective sweep, which produced the low level of variation observed. Following the Pleistocene, wood turtles would have undergone a rapid northward expansion from a common southern refugium as glaciers retreated. These findings shed light on where to direct conservation priorities, on conservation strategies needed, and on the potential effects of interpopulation transfers for this vulnerable species.  相似文献   

7.
Life-history traits such as age at maturity, body size and clutch size tend to vary across a species' distribution. The purpose of our study was to describe the demography of a newly discovered population of North American wood turtles Glyptemys insculpta at the species' northern range limit, and to compare our findings to those of other studies to test hypotheses about adaptive life-history variation. Turtles were hand-captured from May to October 2005 and 2006 along a 4.5 km stretch of river located in the Sudbury District, ON, Canada (46°N). Fifty-five captured individuals provided a population density estimate of 1.3 turtles/100 m of river. Juveniles comprised 35% of wood turtles captured, and growth ring counts (i.e. age estimates) indicated recruitment in each of the past 11 years. Among populations, we found a nonlinear pattern in body size variation with the largest turtles in the north, smallest turtles in the centre of the range, and intermediate-sized turtles in the south. This nonlinear pattern in body size was reflected in clutch size variation. Selective pressures to overcome years of low recruitment may have resulted in larger body sizes and hence large clutch sizes at northern latitudes while conspecifics at southern latitudes can achieve larger body sizes because they live in a more productive environment. Population density decreased with latitude, likely as a result of a gradient in habitat productivity.  相似文献   

8.
Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape.  相似文献   

9.
Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8–20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1—a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.  相似文献   

10.
Glyptemys insculpta is considered to be one of the most endangered freshwater turtles in North America. Here microsatellite markers were employed to investigate the genetic variation and population structure of G. insculpta at Delaware Water Gap National Recreation Area (USA). Seven microsatellites revealed high allelic variation with 13–30 alleles per locus. Observed and expected heterozygosities per locus ranged from 0.875–0.925 to 0.888–0.952, respectively. Pairwise estimates of population structure (θ) ranged from 0.000–0.013 to θ estimated over all loci and aggregations was not significantly different from zero. Gene flow (Nm) was high and ranged from 19 migrants per generation to infinity in pairwise comparisons. No significant relationship between geographic distance and genetic distance was detected. These data indicate that G. insculpta at DEWA represent a single, genetically diverse management unit for conservation.  相似文献   

11.
Sex-biased dispersal is common in many animals, with male-biased dispersal often found in studies of mammals and reptiles, including interpretations of spatial genetic structure, ostensibly as a result of male–male competition and a lack of male parental care. Few studies of sex-biased dispersal have been conducted in turtles, but a handful of studies, in saltwater turtles and in terrestrial turtles, have detected male-biased dispersal as expected. We tested for sex-biased dispersal in the endangered freshwater turtle, the spotted turtle (Clemmys guttata) by investigating fine-scale genetic spatial structure of males and females. We found significant spatial genetic structure in both sexes, but the patterns mimicked each other. Both males and females typically had higher than expected relatedness at distances <25 km, and in many distance classes greater than 25 km, less than expected relatedness. Similar patterns were apparent whether we used only loci in Hardy–Weinberg equilibrium (n = 7) or also included loci with potential null alleles (n = 5). We conclude that, contrary to expectations, sex-biased dispersal is not occurring in this species, possibly related to the reverse sexual dimorphism in this species, with females having brighter colors. We did, however, detect significant spatial genetic structure in males and females, separate and combined, showing philopatry within a genetic patch size of <25 km in C. guttata, which is concerning for an endangered species whose populations are often separated by distances greater than the genetic patch size.  相似文献   

12.
Brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) have been widely introduced outside their respective ranges within North America causing declines and displacement of native trout. Yet, successful coexistence of native and non-native trout has received little attention. Here we evaluated the effect of introduced brook trout on the size and density of native redband trout in two invaded sub-basins in southeastern Oregon. In a multi-year study, we investigated whether habitat and fish communities differed between streams and stream reaches where redband trout were allopatric versus where redband trout were sympatric with brook trout. We hypothesized that redband trout would be less dense and have smaller total length in sympatry with brook trout than in allopatry, but that total trout density would not differ. We investigated whether differences in habitat existed between sympatric and allopatric locations that would indicate differentiation in site level habitat preferences for each trout species. We found that sympatric locations had more wood but similar fish community structure. Mean length and densities of redband trout were higher at allopatric locations. However, in most years at sympatric locations total trout density was twice that of allopatric redband trout sites. Using comparable data from an eastern United States system where brook trout are native, sympatric sites had lower densities of brook trout; however, total trout density did not differ. We conclude that invading trout negatively impact native trout densities; but in southeastern Oregon system the negative impact is minimized.  相似文献   

13.
Metapopulation‐structured species can be negatively affected when landscape fragmentation impairs connectivity. We investigated the effects of urbanization on genetic diversity and gene flow for two sympatric amphibian species, spotted salamanders (Ambystoma maculatum) and wood frogs (Lithobates sylvaticus), across a large (>35,000 km2) landscape in Maine, USA, containing numerous natural and anthropogenic gradients. Isolation‐by‐distance (IBD) patterns differed between the species. Spotted salamanders showed a linear and relatively high variance relationship between genetic and geographic distances (r = .057, p < .001), whereas wood frogs exhibited a strongly nonlinear and lower variance relationship (r = 0.429, p < .001). Scale dependence analysis of IBD found gene flow has its most predictable influence (strongest IBD correlations) at distances up to 9 km for spotted salamanders and up to 6 km for wood frogs. Estimated effective migration surfaces revealed contrasting patterns of high and low genetic diversity and gene flow between the two species. Population isolation, quantified as the mean IBD residuals for each population, was associated with local urbanization and less genetic diversity in both species. The influence of geographic proximity and urbanization on population connectivity was further supported by distance‐based redundancy analysis and multiple matrix regression with randomization. Resistance surface modeling found interpopulation connectivity to be influenced by developed land cover, light roads, interstates, and topography for both species, plus secondary roads and rivers for wood frogs. Our results highlight the influence of anthropogenic landscape features within the context of natural features and broad spatial genetic patterns, in turn supporting the premise that while urbanization significantly restricts interpopulation connectivity for wood frogs and spotted salamanders, specific landscape elements have unique effects on these two sympatric species.  相似文献   

14.
Sea turtle fibropapillomatosis (FP) is a disease marked by proliferation of benign but debilitating cutaneous fibropapillomas and occasional visceral fibromas. Transmission experiments have implicated a chloroform-sensitive transforming agent present in filtered cell-free tumor homogenates in the etiology of FP. In this study, consensus primer PCR methodology was used to test the association of a chelonian herpesvirus with fibropapillomatosis. Fibropapilloma and skin samples were obtained from 17 green and 2 loggerhead turtles affected with FP stranded along the Florida coastline. Ninety-three cutaneous and visceral tumors from the 19 turtles, and 33 skin samples from 16 of the turtles, were tested. All turtles affected with FP had herpesvirus associated with their tumors as detected by PCR. Ninety-six percent (89/93) of the tumors, but only 9% (3/33) of the skin samples, from affected turtles contained detectable herpesvirus. The skin samples that contained herpesvirus were all within 2 cm of a fibropapilloma. Also, 1 of 11 scar tissue samples from sites where fibropapillomas had been removed 2 to 51 wk earlier from 5 green turtles contained detectable herpesvirus. None of 18 normal skin samples from 2 green and 2 loggerhead turtles stranded without FP contained herpesvirus. The data indicated that herpesvirus was detectable only within or close to tumors. To determine if the same virus infected both turtle species, partial nucleotide sequences of the herpesvirus DNA polymerase gene were determined from 6 loggerhead and 2 green turtle samples. The sequences predicted that herpesvirus of loggerhead turtles differed from those of green turtles by only 1 of 60 amino acids in the sequence examined, indicating that a chelonian herpesvirus exhibiting minor intratypic variation was the only herpesvirus present in tumors of both green and loggerhead turtles. The FP-associated herpesvirus resisted cultivation on chelonian cell lines which support the replication of other chelonian herpesviruses. These results lead to the conclusion that a chelonian herpesvirus is regularly associated with fibropapillomatosis and is not merely an incidental finding in affected turtles.  相似文献   

15.
Two species of turtle collected in southern New England were inoculated subcutaneously with eastern equine encephalitis virus. The spotted turtles (Clemmys guttata) developed viremia and neutralizing antibody after exposure to 3 logs or more of virus. Viremia was not detected in the eastern painted turtles (Chrysemys picta), and neutralizing antibody was detected in only 1 of 15 inoculated C. picta; however, since pre-inoculation serum was not obtained from this animal, the possibility of natural infection cannot be eliminated.  相似文献   

16.
Management generally targets the most tractable life stage to rescue declining populations; however, that stage may not have the largest influence on recovery. Freshwater turtles are declining globally and early stages are frequently targeted for management, although the effectiveness of these actions on population growth are relatively unknown because of incomplete demographic data. We estimated the hatchling yearly survival rate for a freshwater turtle in the field using in situ enclosures to collect missing demographic information. We used these data to develop demographic models to calculate growth rate for a hypothetical, declining population of wood turtles (Glyptemys insculpta) in Wisconsin, USA, 2014–2019. We modeled growth for populations across a range of scenarios from no management to combinations of nest protection and head-starting at varying levels of effort. Nest protection alone did not increase population growth rate, while head-starting alone increased population growth by 0.07, with the largest increase in growth rate, 0.11, resulting from combinations of both approaches. No combination of nest protection and head-starting, without an increase in adult survival rate from the observed 0.88 to ≥0.95, led to population stabilization or increase. Populations of freshwater turtles, like the wood turtle, will likely only recover with a multi-faceted approach that targets multiple life stages simultaneously.  相似文献   

17.
In previous studies on nesting green turtles under natural conditions from different geographical regions, 17-β-estradiol (E(2) ) was either undetectable or detected at very low levels. RIA and other related techniques were not sensitive enough to measure low E(2) values in the green turtles. In this study, a sensitive method was used in detecting low hormone concentrations: high performance liquid chromatography with tandem quadruple mass spectrometry (HPLC-MS/MS). Using this technique, estradiol for the first time was detected in nesting green turtles during the peak season (June-October) at Ras Al-Hadd Reserve, Oman. The E(2) values recorded from this study were the highest ever recorded from nesting green turtles in any geographical region, but the levels did not vary significantly throughout different phases of nesting. The presence of E(2) during nesting presumably plays a role in the physiology and behavior of this species. Ras Al-Hadd hosts one of the largest nesting populations of green turtles in the world, and an understanding of their nesting patterns may be of value in conservation and management programs for this endangered species.  相似文献   

18.
A growing body of literature links resources of hosts to their risk of infectious disease. Yet most hosts encounter multiple pathogens, and projections of disease risk based on resource availability could be fundamentally wrong if they do not account for interactions among pathogens within hosts. Here, we measured infection risk of grass hosts (Avena sativa) exposed to three naturally co‐occurring viruses either singly or jointly (barley and cereal yellow dwarf viruses [B/CYDVs]: CYDV‐RPV, BYDV‐PAV, and BYDV‐SGV) along experimental gradients of nitrogen and phosphorus supply. We asked whether disease risk (i.e., infection prevalence) differed in single versus co‐inoculations, and whether these differences varied with rates and ratios of nitrogen and phosphorus supply. In single inoculations, the viruses did not respond strongly to nitrogen or phosphorus. However, in co‐inoculations, we detected illustrative cases of 1) resource‐dependent antagonism (lower prevalence of RPV with increasing N; possibly due to competition), 2) resource‐dependent facilitation (higher prevalence of SGV with decreasing N:P; possibly due to immunosuppression), and 3) weak or no interactions within hosts (for PAV). Together, these within‐host interactions created emergent patterns for co‐inoculated hosts, with both infection prevalence and viral richness increasing with the combination of low nitrogen and high phosphorus supply. We demonstrate that knowledge of multiple pathogens is essential for predicting disease risk from host resources and that projections of risk that fail to acknowledge resource‐dependent interactions within hosts could be qualitatively wrong. Expansions of theory from community ecology theory may help anticipate such relationships by linking host resources to diverse pathogen communities.  相似文献   

19.
20.
The exposure of wild carnivores to viral pathogens, with emphasis on parvovirus (CPV/FPLV), was assessed based on the molecular screening of tissue samples from 128 hunted or accidentally road-killed animals collected in Portugal from 2008 to 2011, including Egyptian mongoose (Herpestes ichneumon, n = 99), red fox (Vulpes vulpes, n = 19), stone marten (Martes foina, n = 3), common genet (Genetta genetta, n = 3) and Eurasian badger (Meles meles, n = 4). A high prevalence of parvovirus DNA (63%) was detected among all surveyed species, particularly in mongooses (58%) and red foxes (79%), along with the presence of CPV/FPLV circulating antibodies that were identified in 90% of a subset of parvovirus-DNA positive samples. Most specimens were extensively autolysed, restricting macro and microscopic investigations for lesion evaluation. Whenever possible to examine, signs of active disease were not present, supporting the hypothesis that the parvovirus vp2 gene fragments detected by real-time PCR possibly correspond to viral DNA reminiscent from previous infections. The molecular characterization of viruses, based on the analysis of the complete or partial sequence of the vp2 gene, allowed typifying three viral strains of mongoose and four red fox’s as feline panleukopenia virus (FPLV) and one stone marten’s as newCPV-2b type. The genetic similarity found between the FPLV viruses from free-ranging and captive wild species originated in Portugal and publicly available comparable sequences, suggests a closer genetic relatedness among FPLV circulating in Portugal.Although the clinical and epidemiological significance of infection could not be established, this study evidences that exposure of sympatric wild carnivores to parvovirus is common and geographically widespread, potentially carrying a risk to susceptible populations at the wildlife-domestic interface and to threatened species, such as the wildcat (Felis silvestris) and the critically endangered Iberian lynx (Lynx pardinus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号