首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PPARγ and 11β-HSD1 are attractive therapeutic targets for type 2 diabetes. However, PPARγ agonists induce adipogenesis, which causes the side effect of weight gain, whereas 11β-HSD1 inhibitors prevent adipogenesis and may be beneficial for the treatment of obesity in diabetic patients. For the first time, we designed, synthesized a series of α-aryloxy-α-methylhydrocinnamic acids as dual functional agents which activate PPARγ and inhibit 11β-HSD1 simultaneously. The compound 11e exhibited the most potent inhibitory activity compared to that of the lead compound 2, with PPARγ (EC50 = 6.76 μM) and 11β-HSD1 (IC50 = 0.76 μM) in vitro. Molecular modeling study for compound 11e was also presented. Compound 11e showed excellent efficacy for lowering glucose, triglycerides, body fat, in well established mice and rats models of diabetes and obesity and had a favorable ADME profile.  相似文献   

2.
Elevated stearoyl-CoA desaturase (SCD) activity has been linked to a number of metabolic disorders including obesity and type II diabetes. Compound 3j, a potent SCD inhibitor (human HepG2 IC50 = 1 nM) was identified from the optimization of a lead thiazole compound MF-152 with over 100-fold improvement in potency. In a 4-week chronic oral dosing at 0.2 mg/kg, 3j gave a robust 24% prevention of body weight gain in mice fed on a high fat diet accompanied with an improved metabolic profile on insulin and glucose levels.  相似文献   

3.
This Letter describes a series of potent and selective BRS-3 agonists containing a biarylethylimidazole pharmacophore. Extensive SAR studies were carried out with different aryl substitutions. This work led to the identification of a compound 2-{2-[4-(pyridin-2-yl)phenyl]ethyl}-5-(2,2-dimethylbutyl)-1H-imidazole 9 with excellent binding affinity (IC50 = 18 nM, hBRS-3) and functional agonist activity (EC50 = 47 nM, 99% activation). After oral administration, compound 9 had sufficient exposure in diet induced obese mice to demonstrate efficacy in lowering food intake and body weight via BRS-3 activation.  相似文献   

4.
We describe the discovery and optimization of a novel series of furo[3,2-d]pyrimidines as G protein-coupled receptor 119 agonists. Agonistic activity of 4 (EC50 = 129 nM) was improved by replacing the intramolecular hydrogen bond between the fluorine atom and the aniline hydrogen in the head moiety with a covalent C-C bond to enhance conformational restriction, which consequently gave a lead compound 12 (EC50 = 53 nM). Optimized compound 26, which was identified by the further optimization of 12, exhibited potent activity (EC50 = 42 nM) with improved clearance in liver microsomes and induced a 33% reduction in blood glucose area under the curve at a dose of 10 mg/kg in an oral glucose tolerance test in C57BL/6N mice.  相似文献   

5.
A novel series of pyrrolidine-2-carbonitrile and 4-fluoropyrrolidine-2-carbonitrile derivatives was designed, synthesized, and found to act as dipeptidyl peptidase-4 (DPP-4) inhibitors. From this series of compounds, compound 17a was identified as an efficacious, safe, and selective inhibitor of DPP-4. In vivo studies in ICR and KKAy mice showed that administration of this compound resulted in decreased blood glucose in these mice after an oral glucose challenge. Compound 17a showed high DPP-4 inhibitory activity (IC50 = 0.017 μM), moderate selectivity against DPP-4 (selective ratio: DPP-8/DPP-4 = 1324; DPP-9/DPP-4 = 1164), and good efficacy in oral glucose tolerance tests in ICR and KKAy mice. These in vivo anti-diabetic properties and its desirable pharmacokinetic profile in Sprague–Dawley rats demonstrate that compound 17a is a promising candidate for development as an anti-diabetic agent.  相似文献   

6.
A series of novel, potent PPARα/γ dual agonists were synthesized and appraised. The most potent analogue, compound 2b demonstrated EC50 value of 0.012 ± 0.002 and 0.032 ± 0.01 μM, respectively, for hPPARα and hPPARγ in transactivation assay. Additionally, compound 2b demonstrated good glucose and lipid lowering effect in genetic diabetic (db/db) mice.  相似文献   

7.
As the result of a rhJNK1 HTS, the imidazo[1,2-a]quinoxaline 1 was identified as a 1.6 μM rhJNK1 inhibitor. Optimization of this compound lead to AX13587 (rhJNK1 IC50 = 160 nM) which was co-crystallized with JNK1 to identify key molecular interactions. Kinase profiling against 125+ kinases revealed AX13587 was an inhibitor of JNK, MAST3, and MAST4 whereas its methylene homolog AX14373 (native JNK1 IC50 = 47 nM) was a highly specific JNK inhibitor.  相似文献   

8.
The free fatty acid receptor 1 (FFA1), a G protein-coupled receptor (GPCR) naturally activated by long-chain fatty acids is a novel target for the treatment of metabolic diseases. The basic amine spirocyclic periphery of Eli Lilly’s drug candidate LY2881835 for treatment of type 2 diabetes mellitus (which reached phase I clinical trials) inspired a series of novel FFA1 agonists. These were designed to incorporate the 3-[4-(benzyloxy)phenyl]propanoic acid pharmacophore core decorated with a range of spirocyclic motifs. The latter were prepared via the Prins cyclization and subsequent modification of the 4-hydroxytetrahydropyran moiety in the Prins product. Here, we synthesize 19 compounds and test for FFA1 activity. Within this pilot set, a nanomolar potency (EC50 = 55 nM) was reached. Four lead compounds (EC50 range 55–410 nM) were characterized for aqueous solubility, metabolic stability, plasma protein binding and Caco-2 permeability. While some instability in the presence of mouse liver microsomes was noted, mouse pharmacokinetic profile of the compound having the best overall ADME properties was evaluated to reveal acceptable bioavailability (F = 10.3%) and plasma levels achieved on oral administration.  相似文献   

9.
2,3-Dihydro-3,8-diphenylbenzo[1,4]oxazines were identified as a new class of potent cholesteryl ester transfer protein inhibitors. The most potent compound 6a (IC50 = 26 nM) possessed a favorable pharmacokinetic profile with good oral bioavailability in rat (F = 53%) and long human liver microsome stability (t1/2 = 62 min). It increased HDL-C in human CETP transgenic mice and high-fat fed hamsters. The structure and activity relationship of this series will be described in this Letter.  相似文献   

10.
A novel series of substituted benzoylguanidine derivatives were designed and synthesized as potent NHE1 inhibitors. Most compounds can significantly inhibit NHE1-mediated platelet swelling in a concentration-dependent manner, among which compound 5f (IC50 = 3.60 nM) and 5l (IC50 = 4.48 nM) are 18 and 14 times respectively more potent than cariporide (IC50 = 65.0 nM). Furthermore, when tested in vivo and in vitro, compound 5f showed superior cardioprotective effects against SD rat myocardial ischemic-reperfusion injury over cariporide, representing a promising lead compound for further exploration.  相似文献   

11.
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50 = 7.7 μM) and 2 (IC50 = 10.6 μM) as represented by hybrid compound 27 (IC50 = 6.7 μM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 μM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the d-isomers 41 (IC50 = 19.3 μM) and 45 (IC50 = 5.4 μM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.  相似文献   

12.
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.  相似文献   

13.
Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although we previously identified a compound (2) with potent VAP-1 inhibitory activity in rats, the human activity was relatively weak. Here, to improve the human VAP-1 inhibitory activity of compound 2, we first evaluated the structure–activity relationships of guanidine bioisosteres as simple small molecules and identified a 1H-benzimidazol-2-amine (5) with potent activity compared to phenylguanidine (1). Based on the structure of compound 5, we synthesized a highly potent VAP-1 inhibitor (37b; human IC50 = 0.019 μM, rat IC50 = 0.0051 μM). Orally administered compound 37b also markedly inhibited ocular permeability in streptozotocin-induced diabetic rats after oral administration, suggesting it is a promising compound for the treatment of diabetic macular edema.  相似文献   

14.
The purpose of this study was to synthetize the focused library of 34 new piperazinamides of 3-methyl- and 3,3-dimethyl-(2,5-dioxopyrrolidin-1-yl)propanoic or butanoic acids as potential new hybrid anticonvulsants. These hybrid molecules join the chemical fragments of well-known antiepileptic drugs (AEDs) such as ethosuximide, levetiracetam, and lacosamide. Compounds 538 were prepared in a coupling reaction of the 3-methyl- or 3,3-dimethyl-2-(2,5-dioxopyrrolidin-1-yl)propanoic (1, 2) or butanoic acids (3, 4) with the appropriately substituted secondary amines in the presence of the N,N-carbonyldiimidazole reagent. The initial anticonvulsant screening was performed in mice (ip) using the ‘classical’ maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests as well as in the six-Hertz (6 Hz) model of pharmacoresistant limbic seizures. The acute neurological toxicity was determined applying the chimney test. The broad spectra of activity across the preclinical seizure models in mice ip displayed compounds 7, 15, and 36. The most favorable anticonvulsant properties demonstrated 15 (ED50 MES = 74.8 mg/kg, ED50 scPTZ = 51.6 mg/kg, ED50 6 Hz = 16.8 mg/kg) which showed TD50 = 213.3 mg/kg in the chimney test that yielded satisfying protective indexes (PI MES = 2.85, PI scPTZ = 4.13, PI 6 Hz = 12.70) at time point of 0.5 h. As a result, compound 15 displayed comparable or better safety profile than clinically relevant AEDs: ethosuximide, lacosamide or valproic acid. In the in vitro assays compound 15 was observed as relatively effective binder to the neuronal voltage-sensitive sodium and L-type calcium channels. Beyond the anticonvulsant properties, 6 compounds diminished the pain responses in the formalin model of tonic pain in mice.  相似文献   

15.
16.
Identification of indazole derivatives acting as dual angiotensin II type 1 (AT1) receptor antagonists and partial peroxisome proliferator-activated receptor-γ (PPARγ) agonists is described.Starting from Telmisartan, we previously described that indole derivatives were very potent partial PPARγ agonists with loss of AT1 receptor antagonist activity.Design, synthesis and evaluation of new central scaffolds led us to the discovery of pyrrazolopyridine then indazole derivatives provided novel series possessing the desired dual activity.Among the new compounds, 38 was identified as a potent AT1 receptor antagonist (IC50 = 0.006 μM) and partial PPARγ agonist (EC50 = 0.25 μM, 40% max) with good oral bioavailability in rat.The dual pharmacology of compound 38 was demonstrated in two preclinical models of hypertension (SHR) and insulin resistance (Zucker fa/fa rat).  相似文献   

17.
This Letter describes the discovery of a novel series of mGluR5 positive allosteric modulators (PAMs). The lead compound, 11c, exhibits excellent potency (EC50 = 30 nM) in vitro, and reaches high brain levels in both rats and mice after oral administration.  相似文献   

18.
A series of hesperidin derivatives were prepared and identified by IR, 1H NMR, and MS spectra. These compounds were evaluated in vitro and in vivo based on α-glucosidase inhibition, glucose consumption of HepG2 cells, and blood glucose level in streptozotocin-induced diabetic mice. The results revealed that all the compounds exhibited anti-hyperglycemic activities. The inhibition at 10?3 M of compounds 3 and 7a on α-glucosidase were 55.02% and 53.34%, respectively, as compared to 54.80% by acarbose. Treated by compound 3 and the reference drug metformin, glucose consumption of HepG2 cell were 1.78 and 2.11 mM, respectively. After the streptozotocin-induced diabetic mice were oral administrated with compound 3 at 100 mg kg?1 d?1 for 10 days, the blood glucose level of 3 treated mice (13.23 mM, P <0.05) showed significant difference when compared to model control (23.03 mM). Thus, compound 3 exhibited promising anti-hyperglycemic activity.  相似文献   

19.
The optimization of our previous lead compound 1 (AChE IC50 = 3.31 μM) through synthesis and pharmacology of a series of novel carbamates is reported. The synthesized compounds were evaluated against mouse brain AChE enzyme using the colorimetric method described by Ellman et al. The three compounds 6a (IC50 = 2.57 μM), 6b (IC50 = 0.70 μM) and 6i (IC50 = 2.56 μM) exhibited potent in vitro AChE inhibitory activities comparable to the drug rivastigmine (IC50 = 1.11 μM). Among them, the compound 6b has been selected as possible optimized lead for further neuropharmacological studies. In addition, the AChE–carbamate Michaelis complexes of these potent compounds including rivastigmine and ganstigmine have been modeled using covalent docking protocol of GOLD and important direct/indirect interactions contributing to stabilization of the AChE–carbamate Michaelis complexes have been investigated.  相似文献   

20.
A co-crystal structure of amide-containing compound (4) in complex with the nicotinamide phosphoribosyltransferase (Nampt) protein and molecular modeling were utilized to design and discover a potent novel cyanoguanidine-containing inhibitor bearing a sulfone moiety (5, Nampt Biochemical IC50 = 2.5 nM, A2780 cell proliferation IC50 = 9.7 nM). Further SAR exploration identified several additional cyanoguanidine-containing compounds with high potency and good microsomal stability. Among these, compound 15 was selected for in vivo profiling and demonstrated good oral exposure in mice. It also exhibited excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model. The co-crystal structure of this compound in complex with the NAMPT protein was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号