首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A novel series of arylsulfonamide derivatives of (aryloxy)propyl piperidines was designed to obtain potent 5-HT7R antagonists. Among the compounds evaluated herein, 3-chloro-N-{1-[3-(1,1-biphenyl-2-yloxy)2-hydroxypropyl]piperidin-4-yl}benzenesulfonamide (25) exhibited antagonistic properties at 5-HT7R and showed selectivity over selected serotoninergic and dopaminergic receptors, as well as over serotonin, noradrenaline and dopamine transporters. Compound 25 demonstrated significant antidepressant-like activity in the forced swim test (0.625–2.5 mg/kg, i.p.) and in the tail suspension test (1.25 mg/kg, i.p.), augmented the antidepressant effect of inactive doses of escitalopram (selective serotonin reuptake inhibitor) and bupropion (dopamine reuptake inhibitor) in the FST in mice, and similarly to SB-269970, exerted pro-cognitive properties in the novel object recognition task in cognitively unimpaired conditions in rats (0.3 mg/kg, i.p.). Such an extended pharmacological profile, especially the augmentation effect of the identified 5-HT7R antagonist on SSRI activity, seems promising regarding the complexity of affective disorders and potentially improved outcomes, including mnemonic performance.  相似文献   

2.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

3.
The synthesis and SAR for a novel series of tetrahydropyrido[3,2-c]pyrroles is described. Optimization of the pendant aryl ring lead to high binding affinity at the 5-HT7 receptor when small lipophilic groups were placed in the para position. Modification of the N-benzyl group and secondary amine were not well tolerated. A representative set of compounds was shown to be functional antagonists of the 5-HT7 receptor.  相似文献   

4.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

5.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

6.
Chromones are a class of natural products found in almost every known terrestrial plant with over 4000 naturally occurring derivatives having been isolated and structurally elucidated. Recently, 5-hydroxy-2-(2-phenylethyl)chromone (5-HPEC), isolated from Imperata cylindrical, showed neuroprotective activity against glutamate induced excitotoxicity in primary cultures of rat cortical cells. In comparison to other naturally occurring neuroprotective chromones, 5-HPEC contains fewer hydroxyl groups. Here we report our most recent characterization on this interesting natural product against a number of CNS receptors for the purpose to identify the potential molecular targets that may be related to its biological activity. Based on our studies, including radiobinding assays, calcium flux functional assays and molecular modeling studies, 5-HPEC may represent a type of novel nonnitrogenous ligands to the 5-HT2B receptor.  相似文献   

7.
5-HT7 receptor (5-HT7R) is a promising target for the treatment of depression and neuropathic pain. 5-HT7R antagonists exhibited antidepressant effects, while the agonists produced strong anti-hyperalgesic effects. In our efforts to discover selective 5-HT7R antagonists or agonists, N-biphenylylmethyl 2-methoxyphenylpiperazinylalkanamides 1 were designed, synthesized, and biologically evaluated against 5-HT7R. Among the synthesized compounds, N-2′-chlorobiphenylylmethyl 2-methoxyphenylpiperazinylpentanamide 18 showed the best binding affinity with a Ki value of 8.69 nM and it was verified as a novel antagonist according to functional assays. The compound 18 was very selective over 5-HT1DR, 5-HT2AR, 5-HT3R, 5-HT5AR and 5-HT6R and moderately selective over 5-HT1AR, 5-HT1BR and 5-HT2CR. The novel 5-HT7R antagonist 18 exhibited an antidepressant effect at a dose of 25 mg/kg in the forced swimming test in mice and showed a U-shaped dose–response curve which typically appears in 5-HT7R antagonists such as SB-269970 and lurasidone.  相似文献   

8.
Gut-derived 5-hydroxytryptamine (5-HT) is well known for its role in mediating colonic motility function. However, it is not very clear whether brain-derived 5-HT is involved in the regulation of colonic motility. In this study, we used central 5-HT knockout (KO) mice to investigate whether brain-derived 5-HT mediates colonic motility, and if so, whether it involves oxytocin (OT) production in the hypothalamus and OT receptor in the colon. Colon transit time was prolonged in KO mice. The OT levels in the hypothalamus and serum were decreased significantly in the KO mice compared to wild-type (WT) controls. OT increased colonic smooth muscle contraction in both KO and WT mice, and the effects were blocked by OT receptor antagonist and tetrodotoxin but not by hexamethonium or atropine. Importantly, the OT-induced colonic smooth muscle contraction was decreased significantly in the KO mice relative to WT. The OT receptor expression of colon was detected in colonic myenteric plexus of mice. Central 5-HT is involved in the modulation of colonic motility which may modulate through its regulation of OT synthesis in the hypothalamus. Our results reveal a central 5-HT - hypothalamus OT - colonic OT receptor axis, providing a new target for the treatment of brain-gut dysfunction.  相似文献   

9.
As part of our efforts to develop agents for cognitive enhancement, we have been focused on the 5-HT6 receptor in order to identify potent and selective ligands for this purpose. Herein we report the identification of a novel series of 3-sulfonylindazole derivatives with acyclic amino side chains as potent and selective 5-HT6 antagonists. The synthesis and detailed SAR of this class of compounds are reported.  相似文献   

10.
Progress in the field of neuronal receptor research has accelerated during the last few years due to developments in pharmacology and molecular biology. This is particularly true in the case of the serotonin 5-HT1A receptor. In 1983 the very selective, high affinity 5-HT1A agonist 8-OH-DPAT was developed which allowed the pharmacology and distribution of the 5-HT1A receptor in the central nervous system of the rat and man to be extensively characterized. By 1987, the gene encoding this receptor protein was cloned and sequenced, allowing not only elucidation of its structure, but also better insight into the nature of its coupling to transmembrane signal transduction systems. Thus in a short period of time considerable knowledge has accumulated on how serotonin exerts its functions in the central nervous system via the 5-HT1A receptor. In the present review we will briefly discuss some of the latest developments regarding the 5-HT1A receptor.  相似文献   

11.
An alignment of serotonin [5-hydroxytryptamine (5-HT)] G protein-coupled receptors identified a lysine at position 4.45 (helix 4) and a small polar residue (serine or cysteine) at 7.45 (helix 7) that occur exclusively in the 5-HT2 receptor family. Other serotonin receptors have a hydrophobic amino acid, typically a methionine, at 4.45 and an invariant asparagine at 7.45. The functional significance of these class-specific substitutions was tested by site-directed mutagenesis of two distantly related 5-HT2 receptors, Caenorhabditis elegans 5-HT2ce and rat 5-HT2C. Residues 4.45 and 7.45 were each mutated to a methionine and asparagine, respectively, or an alanine and the resulting constructs were tested for activity. A K4.45M mutation decreased serotonin-dependent activity (Emax) of the rat 5-HT2C receptor by 60% and that of the C. elegans homologue by 40%, as determined by a fluorometric plate-based calcium assay. The rat mutant also exhibited nearly sixfold higher agonist binding affinity and significantly lower constitutive activity compared with wildtype. Mutagenesis of S7.45 in the C. elegans receptor increased serotonin binding affinity by up to 25-fold and decreased Emax by up to 65%. The same mutations of the cognate C7.45 in rat 5-HT2C produced a smaller fourfold change in the affinity for serotonin and decreased agonist efficacy by up to 50%. Substitutions of S/C7.45 did not produce a significant change in the basal activity of either receptor. All mutants tested exhibited levels of receptor expression similar to the corresponding wildtype based on measurements of specific [3H]-mesulergine binding or flow cytometry analyses. Taken together, these results suggest that K4.45 and S/C7.45 play an important role in the conformational rearrangements leading to agonist-induced activation of 5-HT2 receptors.  相似文献   

12.
N1-Arylsulfonyl-3-piperazinyl indole derivatives were designed and identified as a novel class of 5-HT6 receptors ligands. All the compounds have high affinity and antagonist activity towards 5-HT6 receptor. The compound 7a (Ki = 3.4 nM, functional assay IC50 = 310 nM) shows enhanced cognitive effect when tested in NORT and Morris water maze models. Synthesis, SAR and PK profile of these novel compounds constitute the subject matter of this Letter.  相似文献   

13.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

14.
We have previously described fluorine-18 radiolabeled FCWAY [N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) trans-4-fluorocyclohexanecarboxamide] as a high affinity ligand for imaging the 5-HT(1A) receptor in vivo. In a search for radiopharmaceuticals with unique imaging applications using positron emission tomography (PET), we have also developed three new phenylcarboxamide analogues of FCWAY. Two of these analogues were generated by replacing the fluorocyclohexane carboxylic acid with fluorobenzoic acid (FBWAY) or with 3-methyl-4-fluorobenzoic acid (MeFBWAY). The final analogue was generated by replacing the pyridyl group with a pyrimidyl group and the fluorocyclohexane carboxylate with fluorobenzoic acid (FPWAY). We evaluated the metabolic profile of these compounds using either human or rat hepatocytes to produce metabolites and LC-MS/MS to identify these metabolites. We also compared the metabolic rate of these compounds in human or rat hepatocytes. These in vitro metabolism studies indicate that hydrolysis of the amide linkage was the major metabolic pathway for FPWAY and FBWAY in human hepatocytes, whereas aromatic oxidation is the major metabolic pathway for MeFBWAY. The comparative metabolic rate in human hepatocytes was FPWAY>FBWAY>MeFBWAY. In rat hepatocytes, aromatic oxidation was the major metabolic pathway for all three analogs and the rate of this process was similar for all of the analogues. These in vitro metabolic studies demonstrated species differences prior to the acquisition and interpretation of in vivo results.  相似文献   

15.
Molecular cloning and expression of canine (ca) serotonin 5-HT(1B) and ca 5-HT(1D) receptor subtypes showed that besides the lower binding affinity of ketanserin for the ca 5-HT(1D) receptor, the ligand binding profiles were similar to their human homologues. Site-directed mutagenesis studies suggest that a Gln(189) residue in the second extracellular loop of the ca 5-HT(1D) receptor may partially account for the lower binding affinity of ketanserin. The coupling of ca 5-HT(1B) and ca 5-HT(1D) receptor subtypes to the phospholipase C pathway was analyzed by measuring stimulation of inositol phosphate formation in COS-7 cells. Zolmitriptan potently stimulated (EC(50) = 4.9 nM) the inositol phosphate formation at ca 5-HT(1D) receptors in a fully pertussis toxin (PTX)-dependent manner, whereas only a weak PTX-resistant inositol phosphate response (26-29% at 10 microM zolmitriptan) could be detected for the ca 5-HT(1B) receptor at a similar expression level. In contrast, both ca 5-HT(1B) and ca 5-HT(1D) receptor subtypes yielded a similar maximal magnitude of inositol phosphate formation (300-340% at 10 microM zolmitriptan) upon co-expression with a mouse (m) G(alpha15) protein. PTX treatment and co-expression with a beta-adrenergic receptor kinase C-terminal polypeptide partially (20-46%) abolished the m G(alpha15) protein-dependent ca 5-HT(1B) and ca 5-HT(1D) receptor-mediated stimulation of inositol phosphate formation. This study suggests both 5-HT receptor subtypes can activate betagamma subunits of endogenous G(i/o) proteins besides their coupling to recombinant m G(alpha15) protein.  相似文献   

16.
Serotonin (5-HT) receptors are classified into seven groups (5-HT1–7), comprising at least 14 structurally and pharmacologically distinct receptor subtypes. Pharmacological antagonism of ionotropic 5-HT3 receptors has been shown to modulate both behavioral and neurochemical aspects of the induction of sensitization to cocaine. It is not known, however, if specific molecular subunits of the 5-HT3 receptor influence the development of cocaine sensitization. To address this question, we studied the effects of acute and chronic intermittent cocaine administration in mice with a targeted deletion of the gene for the 5-HT3A-receptor subunit (5-HT3A−/−). 5-HT3A (−/−) mice showed blunted induction of cocaine-induced locomotor sensitization as compared with wild-type littermate controls. 5-HT3A (−/−) mice did not differ from wild-type littermate controls on measures of basal motor activity or response to acute cocaine treatment. Enhanced locomotor response to saline injection following cocaine sensitization was observed equally in 5-HT3A (−/−) and wild-type mice suggesting similar conditioned effects associated with chronic cocaine treatment. These data show a role for the 5-HT3A-receptor subunit in the induction of behavioral sensitization to cocaine and suggest that the 5-HT3A molecular subunit modulates neurobehavioral adaptations to cocaine, which may underlie aspects of addiction.  相似文献   

17.
Mutant mice that lack serotonin(1A) receptors exhibit enhanced anxiety-related behaviors, a phenotype that is hypothesized to result from impaired autoinhibitory control of midbrain serotonergic neuronal firing. Here we examined the impact of serotonin(1A) receptor deletion on forebrain serotonin neurotransmission using in vivo microdialysis in the frontal cortex and ventral hippocampus of serotonin(1A) receptor mutant and wild-type mice. Baseline dialysate serotonin levels were significantly elevated in mutant animals as compared with wild-types both in frontal cortex (mutant = 0.44 +/- 0.05 n M; wild-type = 0.28 +/- 0.03 n M) and hippocampus (mutant = 0.46 +/- 0.07 n M; wild-type = 0.27 +/- 0.04 n M). A stressor known to elicit enhanced anxiety-like behaviors in serotonin(1A) receptor mutants increased dialysate 5-HT levels in the frontal cortex of mutant mice by 144% while producing no alteration in cortical 5-HT in wild-type mice. There was no phenotypic difference in the effect of this stressor on serotonin levels in the hippocampus. Fluoxetine produced significantly greater increases in dialysate 5-HT content in serotonin(1A) receptor mutants as compared with wild-types, with two- and three-fold greater responses being observed in the hippocampus and frontal cortex, respectively. This phenotypic effect was mimicked in wild-types by pretreatment with the serotonin(1A) antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (p-MPPI). These results indicate that deletion of central serotonin(1A) receptors results in a tonic disinhibition of central serotonin neurotransmission, with a greater dysregulation of serotonin release in the frontal cortex than ventral hippocampus under conditions of stress or increased interstitial serotonin levels.  相似文献   

18.
Although several serotonin (5-HT) receptor subtypes influence ethanol consumption, the motivational mechanisms underlying these changes remain unclear. The present experiments characterized the rewarding, aversive and stimulant effects of ethanol in combination with a specific 5-HT1A receptor antagonist (pindobind-5HT1A). In a place conditioning study, adult male Swiss-Webster mice received 6 parings of a distinctive tactile stimulus with either 2 g/kg ethanol, 2.5 mg/kg pindobind-5HT1A, or both drugs in combination. Ethanol-conditioned preference for the tactile cue was enhanced in mice also receiving pindobind-5HT1A, which did not produce cue preference in the absence of ethanol. In a taste conditioning study, Swiss-Webster mice received 4 trials consisting of access to a distinctive NaCl flavor followed by either 4 g/kg ethanol, 2.5 mg/kg pindobind-5HT1A, or both drugs. As expected, ethanol produced avoidance of the flavor. Pindobind-5HT1A did not reduce or enhance ethanol-conditioned flavor aversion. In a study characterizing locomotor activity, 2 g/kg ethanol produced stimulation, which was enhanced after 10 daily treatments. Locomotor sensitization was not altered by co-treatment with pindobind-5HT1A. Overall, the present results show specific effects of 5-HT1A blockade on ethanol reward.  相似文献   

19.
A model series of 5-HT2C antagonists have been prepared by rapid parallel synthesis. These N-substituted phenyl-N′-pyridin-3-yl ureas were found to have a range of 5-HT2C receptor affinities and selectivities over the closely related 5-HT2A receptor. Extrapolation of simple SAR, derived from this set of compounds, to the more active but synthetically more complex 1-(3-pyridyl-carbamoyl)indoline series allowed us to target optimal substitution patterns and identify potent and selective 5-HT2C/2B antagonists.  相似文献   

20.
In pharmacological bioassays on isolated ring-shaped auricle preparations of Sepia officinalis, the action of the specific 5-hydroxytryptamine (5-HT) agonists 8-OH-DPAT (5-HT1a), CP-93129 (5-HT1b), TFMPP (5-HT1b) and RS-67333 (5-HT4) on these autonomously contractile compartments was studied. 8-OH-DPAT and CP-93129 induced mainly positive effects on frequency and tone on the isotonically suspended auricles. The positive effect of 8-OH-DPAT on frequency was blocked by the specific 5-HT1a antagonist NAN-190. The 5-HT1b agonist TFMPP caused similar effects on tone and a positive impact on the auricular amplitude. The highly specific 5-HT4 agonist RS-67333 induced an effect opposite to the action of 5-HT1 agonists inducing mainly negative effects on frequency, amplitude and tone, causing a diastolic standstill at a concentration of 10(-6) M. These negative effects were blocked by the adenylyl cyclase inhibitor SQ-22,536 in the absence of a diastolic standstill. The opposing action of 5-HT1 and 5-HT4 agonists on auricular contractile activity suggests that an antagonistic 5-HT-receptor system exists within the auricular myocardial cells of S. officinalis, probably consisting of 5-HT1- and 5-HT4-like subtypes. The results also suggest that adenylyl cyclase acts as the intracellular target enzyme of both signal transduction mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号